結果
| 問題 |
No.228 ゆきこちゃんの 15 パズル
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 16:35:51 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 85 ms / 5,000 ms |
| コード長 | 4,103 bytes |
| コンパイル時間 | 305 ms |
| コンパイル使用メモリ | 82,904 KB |
| 実行使用メモリ | 78,312 KB |
| 最終ジャッジ日時 | 2025-06-12 16:36:00 |
| 合計ジャッジ時間 | 2,316 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 |
ソースコード
import sys
from collections import deque
def read_input():
grid = []
for _ in range(4):
row = list(map(int, sys.stdin.readline().split()))
grid.append(row)
return grid
def initial_grid():
grid = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 0]
]
return grid
def calculate_inversions_and_empty_pos(grid, n=4):
flat = []
empty_pos = None
for i in range(n):
for j in range(n):
if grid[i][j] == 0:
empty_pos = (i, j)
else:
flat.append(grid[i][j])
inversions = 0
for i in range(len(flat)):
for j in range(i+1, len(flat)):
if flat[i] > flat[j]:
inversions += 1
return inversions, empty_pos
def is_solvable(initial_inversions, initial_empty_row, target_inversions, target_empty_row):
initial_parity = (initial_inversions + initial_empty_row) % 2
target_parity = (target_inversions + target_empty_row) % 2
return initial_parity == target_parity
def main():
target = read_input()
initial = initial_grid()
# Check if target is same as initial (trivial case)
if target == initial:
print("Yes")
return
# Compute inversion and empty position for initial and target
initial_flat = [initial[i][j] for i in range(4) for j in range(4)]
target_flat = [target[i][j] for i in range(4) for j in range(4)]
# Function to compute inversion and empty position
def compute_inversion_and_empty(g):
inv = 0
empty_pos = -1
for i in range(16):
if g[i] == 0:
empty_pos = i
continue
for j in range(i+1, 16):
if g[j] != 0 and g[i] > g[j]:
inv += 1
empty_row = empty_pos // 4
return inv, empty_row
initial_inversions, initial_empty_row = compute_inversion_and_empty(initial_flat)
target_inversions, target_empty_row = compute_inversion_and_empty(target_flat)
# Check standard solvability condition
if (initial_inversions + initial_empty_row) % 2 != (target_inversions + target_empty_row) % 2:
print("No")
return
# Now perform BFS with state tracking including moved tiles
# Each state is a tuple (grid, moved_tiles_set, empty_pos)
initial_state = []
for i in range(4):
for j in range(4):
initial_state.append(initial[i][j])
initial_state = tuple(initial_state)
initial_moved = frozenset()
initial_empty_pos = (3, 3) # Starting position of empty in initial state
target_state = []
for i in range(4):
for j in range(4):
target_state.append(target[i][j])
target_state = tuple(target_state)
visited = set()
queue = deque()
queue.append((initial_state, initial_moved, initial_empty_pos))
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
while queue:
current, moved, empty = queue.popleft()
if current == target_state:
print("Yes")
return
if (current, moved) in visited:
continue
visited.add((current, moved))
# Find position of empty
empty_i, empty_j = empty
for di, dj in directions:
ni, nj = empty_i + di, empty_j + dj
if 0 <= ni < 4 and 0 <= nj < 4:
tile = current[ni * 4 + nj]
if tile != 0 and tile not in moved:
new_moved = set(moved)
new_moved.add(tile)
new_moved = frozenset(new_moved)
new_state = list(current)
# Swap empty with the tile
new_state[ni * 4 + nj] = 0
new_state[empty_i * 4 + empty_j] = tile
new_state = tuple(new_state)
new_empty_pos = (ni, nj)
if (new_state, new_moved) not in visited:
queue.append((new_state, new_moved, new_empty_pos))
print("No")
if __name__ == "__main__":
main()
gew1fw