結果
| 問題 |
No.1611 Minimum Multiple with Double Divisors
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 16:45:50 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,491 bytes |
| コンパイル時間 | 191 ms |
| コンパイル使用メモリ | 82,304 KB |
| 実行使用メモリ | 92,512 KB |
| 最終ジャッジ日時 | 2025-06-12 16:46:37 |
| 合計ジャッジ時間 | 41,996 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 9 WA * 20 TLE * 8 |
ソースコード
import sys
import random
from math import gcd
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = gcd(abs(x - y), n)
if d != n:
return d
def factorize(n):
factors = {}
def _factor(n):
if n == 1:
return
if is_prime(n):
factors[n] = factors.get(n, 0) + 1
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
return factors
def find_min_prime(factors_set):
primes_list = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293]
for p in primes_list:
if p not in factors_set:
return p
p = 2
while True:
if p not in factors_set:
return p
p += 1
def main():
input = sys.stdin.read().split()
T = int(input[0])
idx = 1
for _ in range(T):
X = int(input[idx])
idx += 1
if X == 1:
print(2)
continue
factors = factorize(X)
primes_set = set(factors.keys())
D = 1
for p in factors:
D *= (factors[p] + 1)
if 2 * D != 2 * D:
print(0)
continue
p = find_min_prime(primes_set)
Y_p = X * p
Y_list = [Y_p]
for p_j in factors:
a_j = factors[p_j]
Y_j = X * (p_j ** (a_j + 1))
Y_list.append(Y_j)
min_Y = min(Y_list)
print(min_Y)
if __name__ == '__main__':
main()
gew1fw