結果
| 問題 | No.1611 Minimum Multiple with Double Divisors | 
| コンテスト | |
| ユーザー |  gew1fw | 
| 提出日時 | 2025-06-12 16:46:21 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                WA
                                 
                             | 
| 実行時間 | - | 
| コード長 | 2,502 bytes | 
| コンパイル時間 | 316 ms | 
| コンパイル使用メモリ | 82,124 KB | 
| 実行使用メモリ | 133,436 KB | 
| 最終ジャッジ日時 | 2025-06-12 16:47:28 | 
| 合計ジャッジ時間 | 23,606 ms | 
| ジャッジサーバーID (参考情報) | judge3 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 9 WA * 20 TLE * 8 | 
ソースコード
import sys
import math
import random
def sieve(n):
    sieve = [True] * (n+1)
    sieve[0] = sieve[1] = False
    for i in range(2, int(math.sqrt(n)) + 1):
        if sieve[i]:
            sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i])
    primes = [i for i, is_p in enumerate(sieve) if is_p]
    return primes
small_primes = sieve(10**6)
def is_prime(n):
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
        if a >= n:
            continue
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for _ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True
def pollards_rho(n):
    if n % 2 == 0:
        return 2
    if n % 3 == 0:
        return 3
    if n % 5 == 0:
        return 5
    while True:
        c = random.randint(1, n-1)
        f = lambda x: (pow(x, 2, n) + c) % n
        x, y, d = 2, 2, 1
        while d == 1:
            x = f(x)
            y = f(f(y))
            d = math.gcd(abs(x - y), n)
        if d != n:
            return d
def factorize(n):
    factors = []
    def _factor(n):
        if n == 1:
            return
        if is_prime(n):
            factors.append(n)
            return
        d = pollards_rho(n)
        _factor(d)
        _factor(n // d)
    _factor(n)
    return factors
def main():
    input = sys.stdin.read().split()
    T = int(input[0])
    cases = list(map(int, input[1:T+1]))
    for X in cases:
        if X == 1:
            print(2)
            continue
        factors = factorize(X)
        factor_counts = {}
        for p in factors:
            factor_counts[p] = factor_counts.get(p, 0) + 1
        a_candidates = []
        for p, a in factor_counts.items():
            y_a = X * (p ** (a + 1))
            a_candidates.append(y_a)
        if a_candidates:
            min_a = min(a_candidates)
        else:
            min_a = X * (2 ** (0 + 1))
        
        q = None
        for p in small_primes:
            if X % p != 0:
                q = p
                break
        if q is None:
            q = 2
        y_b = X * q
        
        minimal_y = min(min_a, y_b)
        print(minimal_y)
if __name__ == '__main__':
    main()
            
            
            
        