結果
| 問題 |
No.3038 シャッフルの再現
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 18:47:51 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 2,685 bytes |
| コンパイル時間 | 190 ms |
| コンパイル使用メモリ | 82,280 KB |
| 実行使用メモリ | 67,792 KB |
| 最終ジャッジ日時 | 2025-06-12 18:47:58 |
| 合計ジャッジ時間 | 2,596 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
import math
MOD = 10**9 + 7
def matrix_mult(a, b, mod):
return [
[(a[0][0]*b[0][0] + a[0][1]*b[1][0]) % mod,
(a[0][0]*b[0][1] + a[0][1]*b[1][1]) % mod],
[(a[1][0]*b[0][0] + a[1][1]*b[1][0]) % mod,
(a[1][0]*b[0][1] + a[1][1]*b[1][1]) % mod]
]
def matrix_pow(mat, power, mod):
result = [[1, 0], [0, 1]] # Identity matrix
while power > 0:
if power % 2 == 1:
result = matrix_mult(result, mat, mod)
mat = matrix_mult(mat, mat, mod)
power //= 2
return result
def factorize(n):
factors = {}
while n % 2 == 0:
factors[2] = factors.get(2, 0) + 1
n //= 2
i = 3
while i * i <= n:
while n % i == 0:
factors[i] = factors.get(i, 0) + 1
n //= i
i += 2
if n > 1:
factors[n] = 1
return factors
def get_divisors_sorted(factors):
divisors = [1]
for p in factors:
exponents = [p**e for e in range(1, factors[p]+1)]
new_divisors = []
for d in divisors:
for exp in exponents:
new_divisors.append(d * exp)
divisors += new_divisors
divisors = list(set(divisors))
divisors.sort()
return divisors
def compute_pisano_prime(p):
if p == 2:
return 3
if p == 5:
return 20
mod5 = p % 5
if mod5 in (1, 4):
m = p - 1
else:
m = 2 * (p + 1)
factors = factorize(m)
divisors = get_divisors_sorted(factors)
for d in divisors:
if d == 0:
continue
mat = matrix_pow([[1, 1], [1, 0]], d, p)
fd = mat[0][1]
fd1 = mat[0][0]
if fd % p == 0 and fd1 % p == 1:
return d
return m # should not reach here
def compute_pisano_prime_power(p, k):
if p == 2:
if k == 1:
return 3
else:
return 3 * (2 ** (k - 1))
if p == 5:
if k == 1:
return 20
else:
return 20 * (5 ** (k - 1))
base_period = compute_pisano_prime(p)
return base_period * (p ** (k - 1))
def lcm(a, b):
return a * b // math.gcd(a, b)
def main():
input = sys.stdin.read().split()
idx = 0
N = int(input[idx])
idx += 1
periods = []
for _ in range(N):
p = int(input[idx])
k = int(input[idx + 1])
idx += 2
pp = compute_pisano_prime_power(p, k)
periods.append(pp)
current_lcm = 1
for p in periods:
current_lcm = lcm(current_lcm, p)
current_lcm %= MOD # To prevent integer overflow, though in Python it's not an issue
print(current_lcm % MOD)
if __name__ == "__main__":
main()
gew1fw