結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-06-12 19:23:52 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,862 bytes |
コンパイル時間 | 221 ms |
コンパイル使用メモリ | 82,628 KB |
実行使用メモリ | 70,948 KB |
最終ジャッジ日時 | 2025-06-12 19:23:55 |
合計ジャッジ時間 | 2,575 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import sys import math import random from collections import defaultdict def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n - 1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) factors.sort() return factors def multiply(a, b, mod): a11, a12, a21, a22 = a b11, b12, b21, b22 = b c11 = (a11 * b11 + a12 * b21) % mod c12 = (a11 * b12 + a12 * b22) % mod c21 = (a21 * b11 + a22 * b21) % mod c22 = (a21 * b12 + a22 * b22) % mod return (c11, c12, c21, c22) def matrix_pow(matrix, power, mod): result = (1, 0, 0, 1) while power > 0: if power % 2 == 1: result = multiply(result, matrix, mod) matrix = multiply(matrix, matrix, mod) power //= 2 return result def fib_mod(n, mod): if mod == 1: return (0, 0) if n == 0: return (0, 1) matrix = (1, 1, 1, 0) powered = matrix_pow(matrix, n - 1, mod) fn = powered[0] fn_plus_1 = (powered[0] + powered[2]) % mod return (fn, fn_plus_1) def compute_pisano_period(p): if p == 2: return 3 if p == 5: return 20 mod5 = p % 5 if mod5 in [1, 4]: n = p - 1 else: n = 2 * (p + 1) factors = factor(n) factor_counts = defaultdict(int) for prime in factors: factor_counts[prime] += 1 divisors = [1] for prime, cnt in factor_counts.items(): temp = [] current_powers = [prime**i for i in range(cnt + 1)] for d in divisors: for power in current_powers: temp.append(d * power) divisors = list(set(temp)) divisors.sort() divisors = sorted(divisors) for d in divisors: if d == 0: continue a, b = fib_mod(d, p) if a == 0 and b == 1 % p: return d return n def main(): MOD = 10**9 + 7 input = sys.stdin.read().split() idx = 0 n = int(input[idx]) idx += 1 primes = [] for _ in range(n): p = int(input[idx]) k = int(input[idx + 1]) primes.append((p, k)) idx += 2 global_factors = defaultdict(int) for p, k in primes: if p == 1: continue pisano_p = compute_pisano_period(p) factors = factor(pisano_p) local_factors = defaultdict(int) for prime in factors: local_factors[prime] += 1 if k - 1 > 0: local_factors[p] += (k - 1) for prime, cnt in local_factors.items(): if global_factors[prime] < cnt: global_factors[prime] = cnt result = 1 for prime, cnt in global_factors.items(): result = (result * pow(prime, cnt, MOD)) % MOD print(result) if __name__ == "__main__": main()