結果
| 問題 |
No.3038 シャッフルの再現
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 19:23:52 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 3,862 bytes |
| コンパイル時間 | 221 ms |
| コンパイル使用メモリ | 82,628 KB |
| 実行使用メモリ | 70,948 KB |
| 最終ジャッジ日時 | 2025-06-12 19:23:55 |
| 合計ジャッジ時間 | 2,575 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
import math
import random
from collections import defaultdict
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n - 1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = math.gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = []
def _factor(n):
if n == 1:
return
if is_prime(n):
factors.append(n)
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
factors.sort()
return factors
def multiply(a, b, mod):
a11, a12, a21, a22 = a
b11, b12, b21, b22 = b
c11 = (a11 * b11 + a12 * b21) % mod
c12 = (a11 * b12 + a12 * b22) % mod
c21 = (a21 * b11 + a22 * b21) % mod
c22 = (a21 * b12 + a22 * b22) % mod
return (c11, c12, c21, c22)
def matrix_pow(matrix, power, mod):
result = (1, 0, 0, 1)
while power > 0:
if power % 2 == 1:
result = multiply(result, matrix, mod)
matrix = multiply(matrix, matrix, mod)
power //= 2
return result
def fib_mod(n, mod):
if mod == 1:
return (0, 0)
if n == 0:
return (0, 1)
matrix = (1, 1, 1, 0)
powered = matrix_pow(matrix, n - 1, mod)
fn = powered[0]
fn_plus_1 = (powered[0] + powered[2]) % mod
return (fn, fn_plus_1)
def compute_pisano_period(p):
if p == 2:
return 3
if p == 5:
return 20
mod5 = p % 5
if mod5 in [1, 4]:
n = p - 1
else:
n = 2 * (p + 1)
factors = factor(n)
factor_counts = defaultdict(int)
for prime in factors:
factor_counts[prime] += 1
divisors = [1]
for prime, cnt in factor_counts.items():
temp = []
current_powers = [prime**i for i in range(cnt + 1)]
for d in divisors:
for power in current_powers:
temp.append(d * power)
divisors = list(set(temp))
divisors.sort()
divisors = sorted(divisors)
for d in divisors:
if d == 0:
continue
a, b = fib_mod(d, p)
if a == 0 and b == 1 % p:
return d
return n
def main():
MOD = 10**9 + 7
input = sys.stdin.read().split()
idx = 0
n = int(input[idx])
idx += 1
primes = []
for _ in range(n):
p = int(input[idx])
k = int(input[idx + 1])
primes.append((p, k))
idx += 2
global_factors = defaultdict(int)
for p, k in primes:
if p == 1:
continue
pisano_p = compute_pisano_period(p)
factors = factor(pisano_p)
local_factors = defaultdict(int)
for prime in factors:
local_factors[prime] += 1
if k - 1 > 0:
local_factors[p] += (k - 1)
for prime, cnt in local_factors.items():
if global_factors[prime] < cnt:
global_factors[prime] = cnt
result = 1
for prime, cnt in global_factors.items():
result = (result * pow(prime, cnt, MOD)) % MOD
print(result)
if __name__ == "__main__":
main()
gew1fw