結果
問題 |
No.301 サイコロで確率問題 (1)
|
ユーザー |
![]() |
提出日時 | 2025-06-12 19:28:34 |
言語 | PyPy3 (7.3.15) |
結果 |
MLE
|
実行時間 | - |
コード長 | 1,384 bytes |
コンパイル時間 | 233 ms |
コンパイル使用メモリ | 81,888 KB |
実行使用メモリ | 97,728 KB |
最終ジャッジ日時 | 2025-06-12 19:28:37 |
合計ジャッジ時間 | 2,822 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | MLE * 2 |
ソースコード
import sys from fractions import Fraction def main(): input = sys.stdin.read().split() T = int(input[0]) cases = list(map(int, input[1:T+1])) for N in cases: if N <= 6: print("6.0") continue a = [Fraction(0, 1) for _ in range(7)] # a_0 unused c = [Fraction(0, 1) for _ in range(7)] a[1] = Fraction(5, 6) c[1] = Fraction(1, 1) a[2] = (a[1] + Fraction(4, 1)) / 6 c[2] = (Fraction(6, 1) + c[1]) / 6 a[3] = (a[2] + a[1] + Fraction(3, 1)) / 6 c[3] = (Fraction(6, 1) + c[2] + c[1]) / 6 a[4] = (a[3] + a[2] + a[1] + Fraction(2, 1)) / 6 c[4] = (Fraction(6, 1) + c[3] + c[2] + c[1]) / 6 a[5] = (a[4] + a[3] + a[2] + a[1] + Fraction(1, 1)) / 6 c[5] = (Fraction(6, 1) + c[4] + c[3] + c[2] + c[1]) / 6 a[6] = (a[5] + a[4] + a[3] + a[2] + a[1]) / 6 c[6] = (Fraction(6, 1) + c[5] + c[4] + c[3] + c[2] + c[1]) / 6 sum_a = sum(a[1:7]) sum_c = sum(c[1:7]) numerator = Fraction(1, 1) + sum_c / Fraction(6, 1) + Fraction(2, 7) * (N - 7) denominator = Fraction(1, 1) - sum_a / Fraction(6, 1) E0 = numerator / denominator print("{0:.12f}".format(float(E0))) if __name__ == '__main__': main()