結果
| 問題 |
No.640 76本のトロンボーン
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 19:41:25 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,007 bytes |
| コンパイル時間 | 191 ms |
| コンパイル使用メモリ | 81,848 KB |
| 実行使用メモリ | 68,096 KB |
| 最終ジャッジ日時 | 2025-06-12 19:41:28 |
| 合計ジャッジ時間 | 2,030 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 WA * 1 |
| other | AC * 2 WA * 13 |
ソースコード
import sys
from collections import deque
def main():
sys.setrecursionlimit(1 << 25)
N = int(sys.stdin.readline().strip())
grid = []
for _ in range(N):
line = sys.stdin.readline().strip()
grid.append(line)
# Build bipartite graph
# Rows are numbered 0..N-1, columns 0..N-1
# Edges from rows to columns for horizontal trombones
# Edges from columns to rows for vertical trombones
graph = [[] for _ in range(2 * N)] # 0..N-1 are rows, N..2N-1 are columns
# Add edges for horizontal trombones
for i in range(N):
for j in [0, 1]:
valid = True
for k in range(j, j + (N-1)):
if k >= N:
valid = False
break
if grid[i][k] != '.':
valid = False
break
if valid:
for k in range(j, j + (N-1)):
graph[i].append(N + k)
# Add edges for vertical trombones
for j in range(N):
for i in [0, 1]:
valid = True
for k in range(i, i + (N-1)):
if k >= N:
valid = False
break
if grid[k][j] != '.':
valid = False
break
if valid:
for k in range(i, i + (N-1)):
graph[N + j].append(k)
# Compute maximum bipartite matching using Hopcroft-Karp algorithm
def hopcroft_karp():
pair_u = [-1] * (2 * N)
pair_v = [-1] * (2 * N)
dist = [0] * (2 * N)
def bfs():
queue = deque()
for u in range(N):
if pair_u[u] == -1:
dist[u] = 0
queue.append(u)
else:
dist[u] = float('inf')
dist_found = float('inf')
while queue:
u = queue.popleft()
if dist[u] < dist_found:
for v in graph[u]:
if pair_v[v] == -1:
dist_found = dist[u] + 1
elif dist[pair_v[v]] == float('inf'):
dist[pair_v[v]] = dist[u] + 1
queue.append(pair_v[v])
return dist_found != float('inf')
def dfs(u):
for v in graph[u]:
if pair_v[v] == -1 or (dist[pair_v[v]] == dist[u] + 1 and dfs(pair_v[v])):
pair_u[u] = v
pair_v[v] = u
return True
dist[u] = float('inf')
return False
result = 0
while bfs():
for u in range(N):
if pair_u[u] == -1:
if dfs(u):
result += 1
return result
max_matching = hopcroft_karp()
max_x = 2 * N - max_matching
print(max_x)
if __name__ == "__main__":
main()
gew1fw