結果
| 問題 | 
                            No.640 76本のトロンボーン
                             | 
                    
| コンテスト | |
| ユーザー | 
                             gew1fw
                         | 
                    
| 提出日時 | 2025-06-12 19:45:22 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                WA
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 3,346 bytes | 
| コンパイル時間 | 237 ms | 
| コンパイル使用メモリ | 81,980 KB | 
| 実行使用メモリ | 76,784 KB | 
| 最終ジャッジ日時 | 2025-06-12 19:45:32 | 
| 合計ジャッジ時間 | 1,774 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 8 WA * 7 | 
ソースコード
import sys
from collections import deque
def main():
    sys.setrecursionlimit(1 << 25)
    n = int(sys.stdin.readline())
    grid = [sys.stdin.readline().strip() for _ in range(n)]
    # Generate all possible horizontal trombones
    H = []
    for i in range(n):
        max_j = n - (n-1)  # because j can be from 0 to max_j-1 inclusive
        for j in range(max_j):
            valid = True
            for k in range(n-1):
                if j + k >= n:
                    valid = False
                    break
                if grid[i][j + k] != '.':
                    valid = False
                    break
            if valid:
                H.append((i, j))
    # Generate all possible vertical trombones
    V = []
    for j in range(n):
        max_i = n - (n-1)
        for i in range(max_i):
            valid = True
            for k in range(n-1):
                if i + k >= n:
                    valid = False
                    break
                if grid[i + k][j] != '.':
                    valid = False
                    break
            if valid:
                V.append((i, j))
    # Precompute the areas for each trombone
    h_areas = []
    for (i, j) in H:
        area = set()
        for k in range(n-1):
            area.add((i, j + k))
        h_areas.append(area)
    v_areas = []
    for (i, j) in V:
        area = set()
        for k in range(n-1):
            area.add((i + k, j))
        v_areas.append(area)
    # Build the bipartite graph
    graph = [[] for _ in range(len(H))]
    for h_idx in range(len(H)):
        h_area = h_areas[h_idx]
        for v_idx in range(len(V)):
            v_area = v_areas[v_idx]
            if len(h_area.intersection(v_area)) > 0:
                graph[h_idx].append(v_idx)
    # Hopcroft-Karp algorithm implementation
    def hopcroft_karp():
        pair_U = [-1] * len(H)
        pair_V = [-1] * len(V)
        dist = [0] * len(H)
        def bfs():
            queue = deque()
            for u in range(len(H)):
                if pair_U[u] == -1:
                    dist[u] = 0
                    queue.append(u)
                else:
                    dist[u] = float('inf')
            dist_null = float('inf')
            while queue:
                u = queue.popleft()
                if dist[u] < dist_null:
                    for v in graph[u]:
                        if pair_V[v] == -1:
                            dist_null = dist[u] + 1
                        elif dist[pair_V[v]] == float('inf'):
                            dist[pair_V[v]] = dist[u] + 1
                            queue.append(pair_V[v])
            return dist_null != float('inf')
        def dfs(u):
            for v in graph[u]:
                if pair_V[v] == -1 or (dist[pair_V[v]] == dist[u] + 1 and dfs(pair_V[v])):
                    pair_U[u] = v
                    pair_V[v] = u
                    return True
            dist[u] = float('inf')
            return False
        result = 0
        while bfs():
            for u in range(len(H)):
                if pair_U[u] == -1:
                    if dfs(u):
                        result += 1
        return result
    max_matching = hopcroft_karp()
    max_independent_set = len(H) + len(V) - max_matching
    print(max_independent_set)
if __name__ == "__main__":
    main()
            
            
            
        
            
gew1fw