結果
| 問題 |
No.3038 シャッフルの再現
|
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 20:39:18 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 3,700 bytes |
| コンパイル時間 | 265 ms |
| コンパイル使用メモリ | 81,836 KB |
| 実行使用メモリ | 69,520 KB |
| 最終ジャッジ日時 | 2025-06-12 20:39:30 |
| 合計ジャッジ時間 | 2,155 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
import random
import math
from math import gcd
from functools import reduce
MOD = 10**9 + 7
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = []
def _factor(n):
if n == 1:
return
if is_prime(n):
factors.append(n)
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
factors.sort()
return factors
def get_divisors(factors):
factor_counts = {}
for p in factors:
if p in factor_counts:
factor_counts[p] += 1
else:
factor_counts[p] = 1
divisors = [1]
for p, cnt in factor_counts.items():
temp = []
for d in divisors:
current = d
for i in range(1, cnt + 1):
current *= p
temp.append(current)
divisors += temp
divisors = list(set(divisors))
divisors.sort()
return divisors
def fast_doubling(n, mod):
def fib_pair(n):
if n == 0:
return (0, 1)
a, b = fib_pair(n >> 1)
c = a * ((2 * b - a) % mod)
c %= mod
d = (a * a + b * b) % mod
if n & 1:
return (d, (c + d) % mod)
else:
return (c, d)
return fib_pair(n)[0]
def compute_pisano_period(p):
if p == 5:
return 20
mod5 = p % 5
if mod5 == 1 or mod5 ==4:
D = p -1
else:
D = 2 * p + 2
factors = factor(D)
divisors = get_divisors(factors)
for m in divisors:
f_m = fast_doubling(m, p)
if f_m != 0:
continue
f_m_plus_1 = fast_doubling(m + 1, p)
if f_m_plus_1 == 1:
return m
return D
def mod_pow(base, exponent, mod):
result = 1
base = base % mod
while exponent > 0:
if exponent % 2 == 1:
result = (result * base) % mod
exponent = exponent // 2
base = (base * base) % mod
return result
def lcm(a, b):
return a * b // gcd(a, b)
def main():
input = sys.stdin.read().split()
ptr = 0
N = int(input[ptr])
ptr +=1
primes = []
for _ in range(N):
p = int(input[ptr])
k = int(input[ptr+1])
ptr +=2
primes.append( (p, k) )
periods = []
for p, k in primes:
if p == 2:
if k ==1:
period = 3
else:
period = 3 * (2 ** (k-1))
else:
pi_p = compute_pisano_period(p)
period = pi_p * (p ** (k-1))
periods.append(period)
overall_lcm = 1
for period in periods:
overall_lcm = lcm(overall_lcm, period)
overall_lcm %= MOD
print(overall_lcm % MOD)
if __name__ == "__main__":
main()
gew1fw