結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-06-12 20:39:18 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,700 bytes |
コンパイル時間 | 265 ms |
コンパイル使用メモリ | 81,836 KB |
実行使用メモリ | 69,520 KB |
最終ジャッジ日時 | 2025-06-12 20:39:30 |
合計ジャッジ時間 | 2,155 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import sys import random import math from math import gcd from functools import reduce MOD = 10**9 + 7 def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) factors.sort() return factors def get_divisors(factors): factor_counts = {} for p in factors: if p in factor_counts: factor_counts[p] += 1 else: factor_counts[p] = 1 divisors = [1] for p, cnt in factor_counts.items(): temp = [] for d in divisors: current = d for i in range(1, cnt + 1): current *= p temp.append(current) divisors += temp divisors = list(set(divisors)) divisors.sort() return divisors def fast_doubling(n, mod): def fib_pair(n): if n == 0: return (0, 1) a, b = fib_pair(n >> 1) c = a * ((2 * b - a) % mod) c %= mod d = (a * a + b * b) % mod if n & 1: return (d, (c + d) % mod) else: return (c, d) return fib_pair(n)[0] def compute_pisano_period(p): if p == 5: return 20 mod5 = p % 5 if mod5 == 1 or mod5 ==4: D = p -1 else: D = 2 * p + 2 factors = factor(D) divisors = get_divisors(factors) for m in divisors: f_m = fast_doubling(m, p) if f_m != 0: continue f_m_plus_1 = fast_doubling(m + 1, p) if f_m_plus_1 == 1: return m return D def mod_pow(base, exponent, mod): result = 1 base = base % mod while exponent > 0: if exponent % 2 == 1: result = (result * base) % mod exponent = exponent // 2 base = (base * base) % mod return result def lcm(a, b): return a * b // gcd(a, b) def main(): input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr +=1 primes = [] for _ in range(N): p = int(input[ptr]) k = int(input[ptr+1]) ptr +=2 primes.append( (p, k) ) periods = [] for p, k in primes: if p == 2: if k ==1: period = 3 else: period = 3 * (2 ** (k-1)) else: pi_p = compute_pisano_period(p) period = pi_p * (p ** (k-1)) periods.append(period) overall_lcm = 1 for period in periods: overall_lcm = lcm(overall_lcm, period) overall_lcm %= MOD print(overall_lcm % MOD) if __name__ == "__main__": main()