結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-06-12 20:39:34 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 4,022 bytes |
コンパイル時間 | 219 ms |
コンパイル使用メモリ | 82,580 KB |
実行使用メモリ | 70,616 KB |
最終ジャッジ日時 | 2025-06-12 20:39:38 |
合計ジャッジ時間 | 2,647 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import sys import random import math MOD = 10**9 + 7 def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) factors.sort() return factors def factorize(n): if n == 1: return {} factors = factor(n) res = {} for p in factors: if p in res: res[p] += 1 else: res[p] = 1 return res def generate_divisors(factors): divisors = [1] for p in factors: exponents = [p**e for e in range(1, factors[p]+1)] new_divisors = [] for d in divisors: for exp in exponents: new_divisors.append(d * exp) divisors += new_divisors divisors = list(set(divisors)) divisors.sort() return divisors def matrix_mult(a, b, mod): return [ [(a[0][0]*b[0][0] + a[0][1]*b[1][0]) % mod, (a[0][0]*b[0][1] + a[0][1]*b[1][1]) % mod], [(a[1][0]*b[0][0] + a[1][1]*b[1][0]) % mod, (a[1][0]*b[0][1] + a[1][1]*b[1][1]) % mod] ] def matrix_pow(mat, power, mod): result = [[1, 0], [0, 1]] while power > 0: if power % 2 == 1: result = matrix_mult(result, mat, mod) mat = matrix_mult(mat, mat, mod) power = power // 2 return result def compute_fib_d(d, p): if d == 0: return (0, 1) mat = [[1, 1], [1, 0]] mat_d = matrix_pow(mat, d, p) fib_d = mat_d[1][0] fib_d_plus1 = mat_d[0][0] return (fib_d % p, fib_d_plus1 % p) def compute_pisano(p): if p == 2: return 3 if p == 5: return 20 mod = p % 5 if mod == 1 or mod == 4: n = p - 1 else: n = 2 * (p + 1) if n == 0: return 1 factors = factorize(n) divisors = generate_divisors(factors) for d in divisors: if d == 0: continue fib_d, fib_d_plus1 = compute_fib_d(d, p) if fib_d == 0 and fib_d_plus1 == 1: return d return n def main(): input = sys.stdin.read().split() idx = 0 N = int(input[idx]) idx +=1 primes = [] for _ in range(N): p = int(input[idx]) k = int(input[idx+1]) idx +=2 primes.append( (p, k) ) pisano_periods = [] for p, k in primes: if p == 2: period = 3 * (2 ** (k -1)) elif p ==5: period = 20 * (5 ** (k-1)) else: if not is_prime(p): raise ValueError("p must be prime.") base = compute_pisano(p) period = base * (p ** (k-1)) pisano_periods.append( period ) def gcd(a, b): while b: a, b = b, a % b return a def lcm(a, b): return a * b // gcd(a, b) result = 1 for period in pisano_periods: result = lcm(result, period) result %= MOD print(result) if __name__ == '__main__': main()