結果
| 問題 |
No.3038 シャッフルの再現
|
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 20:39:53 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 2,594 bytes |
| コンパイル時間 | 218 ms |
| コンパイル使用メモリ | 82,260 KB |
| 実行使用メモリ | 67,404 KB |
| 最終ジャッジ日時 | 2025-06-12 20:40:00 |
| 合計ジャッジ時間 | 2,207 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
import math
from collections import defaultdict
MOD = 10**9 + 7
def factorize(n):
factors = defaultdict(int)
while n % 2 == 0:
factors[2] += 1
n //= 2
i = 3
max_factor = math.isqrt(n) + 1
while i <= max_factor and n > 1:
while n % i == 0:
factors[i] += 1
n //= i
max_factor = math.isqrt(n) + 1
i += 2
if n > 1:
factors[n] += 1
return factors
def get_divisors(n):
factors = factorize(n)
divisors = [1]
for p, exp in factors.items():
current_length = len(divisors)
p_power = 1
for _ in range(exp):
p_power *= p
for d in divisors[:current_length]:
divisors.append(d * p_power)
divisors = sorted(divisors)
return divisors
def fast_doubling(n, mod):
if n == 0:
return (0 % mod, 1 % mod)
a, b = fast_doubling(n >> 1, mod)
c = (a * ((2 * b - a) % mod)) % mod
d = (a * a + b * b) % mod
if n & 1:
return (d, (c + d) % mod)
else:
return (c, d)
def compute_pisano_period(p):
if p == 2:
return 3
if p == 5:
return 20
mod5 = p % 5
if mod5 in (1, 4):
number = p - 1
else:
number = 2 * (p + 1)
divisors = get_divisors(number)
for d in divisors:
fd, fd1 = fast_doubling(d, p)
if fd == 0 and fd1 == 1 % p:
return d
return None # Should not reach here
def main():
input = sys.stdin.read().split()
ptr = 0
n = int(input[ptr])
ptr += 1
global_factors = defaultdict(int)
for _ in range(n):
p = int(input[ptr])
k = int(input[ptr + 1])
ptr += 2
if p == 2:
if k == 1:
pi_pk = 3
else:
pi_pk = 3 * (2 ** (k - 1))
factors = factorize(pi_pk)
elif p == 5:
pi_pk = 4 * (5 ** k)
factors = factorize(pi_pk)
else:
pi_p = compute_pisano_period(p)
mod_p_sq = p * p
fd_pi_p = fast_doubling(pi_p, mod_p_sq)[0]
if fd_pi_p % mod_p_sq == 0:
m = k
else:
m = k - 1
factors = factorize(pi_p)
factors[p] += m
for prime, exp in factors.items():
if global_factors[prime] < exp:
global_factors[prime] = exp
result = 1
for prime, exp in global_factors.items():
result = (result * pow(prime, exp, MOD)) % MOD
print(result)
if __name__ == "__main__":
main()
gew1fw