結果
| 問題 |
No.1611 Minimum Multiple with Double Divisors
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 21:04:12 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,062 bytes |
| コンパイル時間 | 230 ms |
| コンパイル使用メモリ | 81,680 KB |
| 実行使用メモリ | 98,292 KB |
| 最終ジャッジ日時 | 2025-06-12 21:05:50 |
| 合計ジャッジ時間 | 27,779 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 2 |
| other | AC * 1 WA * 2 TLE * 9 -- * 25 |
ソースコード
import math
import random
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = math.gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = {}
def _factor(n):
if n == 1:
return
if is_prime(n):
factors[n] = factors.get(n, 0) + 1
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
return factors
def find_min_new_prime(primes_set):
candidate = 2
while True:
if candidate not in primes_set and is_prime(candidate):
return candidate
candidate += 1
import sys
input = sys.stdin.read
data = input().split()
T = int(data[0])
cases = list(map(int, data[1:T+1]))
for X in cases:
if X == 1:
print(2)
continue
factors = factor(X)
primes = list(factors.keys())
primes_set = set(primes)
# Option A
p_new = find_min_new_prime(primes_set)
Y_a = X * p_new
# Option B
min_Yb = float('inf')
for p in primes:
a = factors[p]
k = p ** (a + 1)
Y_i = X * k
if Y_i < min_Yb:
min_Yb = Y_i
answer = min(Y_a, min_Yb)
print(answer)
gew1fw