結果
| 問題 |
No.1611 Minimum Multiple with Double Divisors
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 21:05:06 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,638 bytes |
| コンパイル時間 | 163 ms |
| コンパイル使用メモリ | 82,532 KB |
| 実行使用メモリ | 99,276 KB |
| 最終ジャッジ日時 | 2025-06-12 21:06:35 |
| 合計ジャッジ時間 | 23,550 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 2 |
| other | AC * 1 WA * 10 TLE * 1 -- * 25 |
ソースコード
import sys
import math
import random
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = math.gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = []
def _factor(n):
if n == 1:
return
if is_prime(n):
factors.append(n)
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
factors.sort()
return factors
def get_prime_factors(n):
if n == 1:
return {}
factors = factor(n)
res = {}
for p in factors:
res[p] = res.get(p, 0) + 1
return res
def find_s(X):
if X == 1:
return 2
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199]:
if X % p != 0:
return p
if X % 2 != 0:
return 2
if X % 3 != 0:
return 3
return 211
def main():
input = sys.stdin.read().split()
T = int(input[0])
for i in range(1, T+1):
X = int(input[i])
if X == 1:
print(2)
continue
factors = get_prime_factors(X)
primes = list(factors.keys())
exponents = list(factors.values())
d = 1
for e in exponents:
d *= (e + 1)
candidates = []
for p in primes:
e_p = factors[p]
k = e_p + 1
multiplier = p ** k
y_candidate = X * multiplier
candidates.append(y_candidate)
s = find_s(X)
y_candidate = X * s
candidates.append(y_candidate)
Y = min(candidates)
print(Y)
if __name__ == "__main__":
main()
gew1fw