結果
問題 |
No.1611 Minimum Multiple with Double Divisors
|
ユーザー |
![]() |
提出日時 | 2025-06-12 21:05:06 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,638 bytes |
コンパイル時間 | 163 ms |
コンパイル使用メモリ | 82,532 KB |
実行使用メモリ | 99,276 KB |
最終ジャッジ日時 | 2025-06-12 21:06:35 |
合計ジャッジ時間 | 23,550 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 2 |
other | AC * 1 WA * 10 TLE * 1 -- * 25 |
ソースコード
import sys import math import random def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) factors.sort() return factors def get_prime_factors(n): if n == 1: return {} factors = factor(n) res = {} for p in factors: res[p] = res.get(p, 0) + 1 return res def find_s(X): if X == 1: return 2 for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199]: if X % p != 0: return p if X % 2 != 0: return 2 if X % 3 != 0: return 3 return 211 def main(): input = sys.stdin.read().split() T = int(input[0]) for i in range(1, T+1): X = int(input[i]) if X == 1: print(2) continue factors = get_prime_factors(X) primes = list(factors.keys()) exponents = list(factors.values()) d = 1 for e in exponents: d *= (e + 1) candidates = [] for p in primes: e_p = factors[p] k = e_p + 1 multiplier = p ** k y_candidate = X * multiplier candidates.append(y_candidate) s = find_s(X) y_candidate = X * s candidates.append(y_candidate) Y = min(candidates) print(Y) if __name__ == "__main__": main()