結果
問題 | No.1611 Minimum Multiple with Double Divisors |
ユーザー |
![]() |
提出日時 | 2025-06-12 21:30:24 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,502 bytes |
コンパイル時間 | 211 ms |
コンパイル使用メモリ | 82,152 KB |
実行使用メモリ | 137,872 KB |
最終ジャッジ日時 | 2025-06-12 21:31:15 |
合計ジャッジ時間 | 24,871 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 2 |
other | AC * 1 WA * 10 TLE * 1 -- * 25 |
ソースコード
import sys import math import random def sieve(n): sieve = [True] * (n+1) sieve[0] = sieve[1] = False for i in range(2, int(math.sqrt(n)) + 1): if sieve[i]: sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i]) primes = [i for i, is_p in enumerate(sieve) if is_p] return primes small_primes = sieve(10**6) def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factorize(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return factors def main(): input = sys.stdin.read().split() T = int(input[0]) cases = list(map(int, input[1:T+1])) for X in cases: if X == 1: print(2) continue factors = factorize(X) factor_counts = {} for p in factors: factor_counts[p] = factor_counts.get(p, 0) + 1 a_candidates = [] for p, a in factor_counts.items(): y_a = X * (p ** (a + 1)) a_candidates.append(y_a) if a_candidates: min_a = min(a_candidates) else: min_a = X * (2 ** (0 + 1)) q = None for p in small_primes: if X % p != 0: q = p break if q is None: q = 2 y_b = X * q minimal_y = min(min_a, y_b) print(minimal_y) if __name__ == '__main__': main()