結果
| 問題 |
No.1611 Minimum Multiple with Double Divisors
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 21:30:24 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,502 bytes |
| コンパイル時間 | 211 ms |
| コンパイル使用メモリ | 82,152 KB |
| 実行使用メモリ | 137,872 KB |
| 最終ジャッジ日時 | 2025-06-12 21:31:15 |
| 合計ジャッジ時間 | 24,871 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 2 |
| other | AC * 1 WA * 10 TLE * 1 -- * 25 |
ソースコード
import sys
import math
import random
def sieve(n):
sieve = [True] * (n+1)
sieve[0] = sieve[1] = False
for i in range(2, int(math.sqrt(n)) + 1):
if sieve[i]:
sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i])
primes = [i for i, is_p in enumerate(sieve) if is_p]
return primes
small_primes = sieve(10**6)
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = math.gcd(abs(x - y), n)
if d != n:
return d
def factorize(n):
factors = []
def _factor(n):
if n == 1:
return
if is_prime(n):
factors.append(n)
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
return factors
def main():
input = sys.stdin.read().split()
T = int(input[0])
cases = list(map(int, input[1:T+1]))
for X in cases:
if X == 1:
print(2)
continue
factors = factorize(X)
factor_counts = {}
for p in factors:
factor_counts[p] = factor_counts.get(p, 0) + 1
a_candidates = []
for p, a in factor_counts.items():
y_a = X * (p ** (a + 1))
a_candidates.append(y_a)
if a_candidates:
min_a = min(a_candidates)
else:
min_a = X * (2 ** (0 + 1))
q = None
for p in small_primes:
if X % p != 0:
q = p
break
if q is None:
q = 2
y_b = X * q
minimal_y = min(min_a, y_b)
print(minimal_y)
if __name__ == '__main__':
main()
gew1fw