結果
問題 |
No.1611 Minimum Multiple with Double Divisors
|
ユーザー |
![]() |
提出日時 | 2025-06-12 21:32:23 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,491 bytes |
コンパイル時間 | 308 ms |
コンパイル使用メモリ | 82,516 KB |
実行使用メモリ | 99,176 KB |
最終ジャッジ日時 | 2025-06-12 21:33:58 |
合計ジャッジ時間 | 23,384 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 2 |
other | AC * 1 WA * 10 TLE * 1 -- * 25 |
ソースコード
import sys import random from math import gcd def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = gcd(abs(x - y), n) if d != n: return d def factorize(n): factors = {} def _factor(n): if n == 1: return if is_prime(n): factors[n] = factors.get(n, 0) + 1 return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return factors def find_min_prime(factors_set): primes_list = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293] for p in primes_list: if p not in factors_set: return p p = 2 while True: if p not in factors_set: return p p += 1 def main(): input = sys.stdin.read().split() T = int(input[0]) idx = 1 for _ in range(T): X = int(input[idx]) idx += 1 if X == 1: print(2) continue factors = factorize(X) primes_set = set(factors.keys()) D = 1 for p in factors: D *= (factors[p] + 1) if 2 * D != 2 * D: print(0) continue p = find_min_prime(primes_set) Y_p = X * p Y_list = [Y_p] for p_j in factors: a_j = factors[p_j] Y_j = X * (p_j ** (a_j + 1)) Y_list.append(Y_j) min_Y = min(Y_list) print(min_Y) if __name__ == '__main__': main()