結果
| 問題 | No.1080 Strange Squared Score Sum |
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 21:49:05 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 1,504 bytes |
| コンパイル時間 | 335 ms |
| コンパイル使用メモリ | 82,420 KB |
| 実行使用メモリ | 848,796 KB |
| 最終ジャッジ日時 | 2025-06-12 21:54:42 |
| 合計ジャッジ時間 | 2,653 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | MLE * 1 -- * 19 |
ソースコード
MOD = 10**9 + 9
def main():
import sys
N = int(sys.stdin.readline())
# Precompute factorial and inverse factorial
max_n = N
fact = [1] * (max_n + 1)
for i in range(1, max_n + 1):
fact[i] = fact[i - 1] * i % MOD
inv_fact = [1] * (max_n + 1)
inv_fact[max_n] = pow(fact[max_n], MOD - 2, MOD)
for i in range(max_n - 1, -1, -1):
inv_fact[i] = inv_fact[i + 1] * (i + 1) % MOD
# Compute G_x(t) = sum_{x=1 to N} (x+1)^2 * t^x
# We need to compute coefficients up to t^N
Gx = [0] * (N + 1)
for x in range(1, N + 1):
val = (x + 1) ** 2
Gx[x] = val % MOD
# Now, for each K, compute the contribution from M=0 to N
# Using dynamic programming
dp = [ [0]*(N+1) for _ in range(N+1) ]
dp[0][0] = 1
for M in range(1, N+1):
for x in range(1, N+1):
for k in range(x, N+1):
dp[M][k] = (dp[M][k] + Gx[x] * dp[M-1][k - x]) % MOD
# Now, for each K, compute the sum over M of (N! / M! ) * s(M) * dp[M][K]
result = [0] * (N + 1)
for K in range(1, N+1):
total = 0
for M in range(1, min(K, N) + 1):
s = 1 if (M % 4) in {0, 1} else -1
term = fact[N] * inv_fact[M] % MOD
term = term * s % MOD
term = term * dp[M][K] % MOD
total = (total + term) % MOD
result[K] = total
for K in range(1, N+1):
print(result[K] % MOD)
if __name__ == '__main__':
main()
gew1fw