結果
| 問題 |
No.3190 Scoring
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2025-06-20 23:00:31 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 829 ms / 10,000 ms |
| コード長 | 25,074 bytes |
| コンパイル時間 | 12,980 ms |
| コンパイル使用メモリ | 399,552 KB |
| 実行使用メモリ | 81,288 KB |
| 最終ジャッジ日時 | 2025-09-16 03:45:19 |
| 合計ジャッジ時間 | 29,642 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 32 |
コンパイルメッセージ
warning: method `join` is never used
--> src/main.rs:884:12
|
883 | pub trait Join {
| ---- method in this trait
884 | fn join(self, sep: &str) -> String;
| ^^^^
|
= note: `#[warn(dead_code)]` on by default
ソースコード
// 降順に(M+1)/2番目
// 1, 2 の中央値は2になる
//
// W_i >= k となる確率をk=1..=S について求めてM倍で答えになる
// 計算できる?
// 数列の個数は全体でC(S+N-1,N-1)通り
// V[0] >= k (1<=k<=S) となるような数列の個数は C(S-k+N-1,N-1)通り
// p_k として
// ((1-p_k) + p_k x)^M の半分までの係数の和が欲しい
// なんか厳しい感
//
// 10secに気づいた、どういうことだろう
// p_k についてメモしておく
// 上の欲しいところについてはp_kの多項式としても見れるので多点評価で終わり
//
fn main() {
input! {
n: usize,
s: usize,
m: usize,
}
let pc = Precalc::new(n + s + m);
let mut p = vec![];
for i in 1..=s {
p.push(pc.binom(s - i + n - 1, n - 1) / pc.binom(s + n - 1, n - 1));
}
let mut a = vec![];
let geta = (m - 1) / 2 + 1;
for i in geta..=m {
// C(M, i) (1-y)^(M-i) y^i
a.push(pc.binom(m, i));
}
let mut f = dfs(&a).0;
f.splice(0..0, (0..geta).map(|_| M::zero()));
let ans = multipoint_evaluation(f, p)
.iter()
.fold(M::zero(), |s, a| s + *a)
* M::from(n);
println!("{}", ans);
}
fn dfs(a: &[M]) -> (Vec<M>, Vec<M>, Vec<M>) {
if a.len() == 1 {
return (
vec![a[0]],
vec![M::one(), -M::one()],
vec![M::zero(), M::one()],
);
}
let m = a.len() / 2;
let (l, r) = a.split_at(m);
let l = dfs(l);
let r = dfs(r);
(
l.0.convolution(&r.1).add(&r.0.convolution(&l.2)),
l.1.convolution(&r.1),
l.2.convolution(&r.2),
)
}
type M = ModInt<998244353>;
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
// ---------- begin modint ----------
pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
let mut t = 1;
while n > 0 {
if n & 1 == 1 {
t = (t as u64 * r as u64 % m as u64) as u32;
}
r = (r as u64 * r as u64 % m as u64) as u32;
n >>= 1;
}
t
}
pub const fn primitive_root(p: u32) -> u32 {
let mut m = p - 1;
let mut f = [1; 30];
let mut k = 0;
let mut d = 2;
while d * d <= m {
if m % d == 0 {
f[k] = d;
k += 1;
}
while m % d == 0 {
m /= d;
}
d += 1;
}
if m > 1 {
f[k] = m;
k += 1;
}
let mut g = 1;
while g < p {
let mut ok = true;
let mut i = 0;
while i < k {
ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
i += 1;
}
if ok {
break;
}
g += 1;
}
g
}
pub const fn is_prime(n: u32) -> bool {
if n <= 1 {
return false;
}
let mut d = 2;
while d * d <= n {
if n % d == 0 {
return false;
}
d += 1;
}
true
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ModInt<const M: u32>(u32);
impl<const M: u32> ModInt<{ M }> {
const REM: u32 = {
let mut t = 1u32;
let mut s = !M + 1;
let mut n = !0u32 >> 2;
while n > 0 {
if n & 1 == 1 {
t = t.wrapping_mul(s);
}
s = s.wrapping_mul(s);
n >>= 1;
}
t
};
const INI: u64 = ((1u128 << 64) % M as u128) as u64;
const IS_PRIME: () = assert!(is_prime(M));
const PRIMITIVE_ROOT: u32 = primitive_root(M);
const ORDER: usize = 1 << (M - 1).trailing_zeros();
const fn reduce(x: u64) -> u32 {
let _ = Self::IS_PRIME;
let b = (x as u32 * Self::REM) as u64;
let t = x + b * M as u64;
let mut c = (t >> 32) as u32;
if c >= M {
c -= M;
}
c as u32
}
const fn multiply(a: u32, b: u32) -> u32 {
Self::reduce(a as u64 * b as u64)
}
pub const fn new(v: u32) -> Self {
assert!(v < M);
Self(Self::reduce(v as u64 * Self::INI))
}
pub const fn const_mul(&self, rhs: Self) -> Self {
Self(Self::multiply(self.0, rhs.0))
}
pub const fn pow(&self, mut n: u64) -> Self {
let mut t = Self::new(1);
let mut r = *self;
while n > 0 {
if n & 1 == 1 {
t = t.const_mul(r);
}
r = r.const_mul(r);
n >>= 1;
}
t
}
pub const fn inv(&self) -> Self {
assert!(self.0 != 0);
self.pow(M as u64 - 2)
}
pub const fn get(&self) -> u32 {
Self::reduce(self.0 as u64)
}
pub const fn zero() -> Self {
Self::new(0)
}
pub const fn one() -> Self {
Self::new(1)
}
}
impl<const M: u32> Add for ModInt<{ M }> {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut v = self.0 + rhs.0;
if v >= M {
v -= M;
}
Self(v)
}
}
impl<const M: u32> Sub for ModInt<{ M }> {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let mut v = self.0 - rhs.0;
if self.0 < rhs.0 {
v += M;
}
Self(v)
}
}
impl<const M: u32> Mul for ModInt<{ M }> {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
self.const_mul(rhs)
}
}
impl<const M: u32> Div for ModInt<{ M }> {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inv()
}
}
impl<const M: u32> AddAssign for ModInt<{ M }> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<const M: u32> SubAssign for ModInt<{ M }> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<const M: u32> MulAssign for ModInt<{ M }> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<const M: u32> DivAssign for ModInt<{ M }> {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
impl<const M: u32> Neg for ModInt<{ M }> {
type Output = Self;
fn neg(self) -> Self::Output {
if self.0 == 0 {
self
} else {
Self(M - self.0)
}
}
}
impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.get())
}
}
impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.get())
}
}
impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<const M: u32> From<usize> for ModInt<{ M }> {
fn from(val: usize) -> ModInt<{ M }> {
ModInt::new((val % M as usize) as u32)
}
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<const MOD: u32> {
fact: Vec<ModInt<MOD>>,
ifact: Vec<ModInt<MOD>>,
inv: Vec<ModInt<MOD>>,
}
impl<const MOD: u32> Precalc<MOD> {
pub fn new(size: usize) -> Self {
let mut fact = vec![ModInt::one(); size + 1];
let mut ifact = vec![ModInt::one(); size + 1];
let mut inv = vec![ModInt::one(); size + 1];
for i in 2..=size {
fact[i] = fact[i - 1] * ModInt::from(i);
}
ifact[size] = fact[size].inv();
for i in (2..=size).rev() {
inv[i] = ifact[i] * fact[i - 1];
ifact[i - 1] = ifact[i] * ModInt::from(i);
}
Self { fact, ifact, inv }
}
pub fn fact(&self, n: usize) -> ModInt<MOD> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModInt<MOD> {
self.ifact[n]
}
pub fn inv(&self, n: usize) -> ModInt<MOD> {
assert!(0 < n);
self.inv[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> {
if n < k {
return ModInt::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end precalc ----------
impl<const M: u32> Zero for ModInt<{ M }> {
fn zero() -> Self {
Self::zero()
}
fn is_zero(&self) -> bool {
self.0 == 0
}
}
impl<const M: u32> One for ModInt<{ M }> {
fn one() -> Self {
Self::one()
}
fn is_one(&self) -> bool {
self.get() == 1
}
}
// ---------- begin array op ----------
struct NTTPrecalc<const M: u32> {
sum_e: [ModInt<{ M }>; 30],
sum_ie: [ModInt<{ M }>; 30],
}
impl<const M: u32> NTTPrecalc<{ M }> {
const fn new() -> Self {
let cnt2 = (M - 1).trailing_zeros() as usize;
let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
let zeta = root.pow((M - 1) as u64 >> cnt2);
let mut es = [ModInt::zero(); 30];
let mut ies = [ModInt::zero(); 30];
let mut sum_e = [ModInt::zero(); 30];
let mut sum_ie = [ModInt::zero(); 30];
let mut e = zeta;
let mut ie = e.inv();
let mut i = cnt2;
while i >= 2 {
es[i - 2] = e;
ies[i - 2] = ie;
e = e.const_mul(e);
ie = ie.const_mul(ie);
i -= 1;
}
let mut now = ModInt::one();
let mut inow = ModInt::one();
let mut i = 0;
while i < cnt2 - 1 {
sum_e[i] = es[i].const_mul(now);
sum_ie[i] = ies[i].const_mul(inow);
now = ies[i].const_mul(now);
inow = es[i].const_mul(inow);
i += 1;
}
Self { sum_e, sum_ie }
}
}
struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}
pub trait ArrayAdd {
type Item;
fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayAdd for [T]
where
T: Zero + Copy,
{
type Item = T;
fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
let mut c = vec![T::zero(); self.len().max(rhs.len())];
c[..self.len()].copy_from_slice(self);
c.add_assign(rhs);
c
}
}
pub trait ArrayAddAssign {
type Item;
fn add_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArrayAddAssign for [T]
where
T: Add<Output = T> + Copy,
{
type Item = T;
fn add_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() >= rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
}
}
impl<T> ArrayAddAssign for Vec<T>
where
T: Zero + Add<Output = T> + Copy,
{
type Item = T;
fn add_assign(&mut self, rhs: &[Self::Item]) {
if self.len() < rhs.len() {
self.resize(rhs.len(), T::zero());
}
self.as_mut_slice().add_assign(rhs);
}
}
pub trait ArraySub {
type Item;
fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArraySub for [T]
where
T: Zero + Sub<Output = T> + Copy,
{
type Item = T;
fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
let mut c = vec![T::zero(); self.len().max(rhs.len())];
c[..self.len()].copy_from_slice(self);
c.sub_assign(rhs);
c
}
}
pub trait ArraySubAssign {
type Item;
fn sub_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArraySubAssign for [T]
where
T: Sub<Output = T> + Copy,
{
type Item = T;
fn sub_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() >= rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
}
}
impl<T> ArraySubAssign for Vec<T>
where
T: Zero + Sub<Output = T> + Copy,
{
type Item = T;
fn sub_assign(&mut self, rhs: &[Self::Item]) {
if self.len() < rhs.len() {
self.resize(rhs.len(), T::zero());
}
self.as_mut_slice().sub_assign(rhs);
}
}
pub trait ArrayDot {
type Item;
fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayDot for [T]
where
T: Mul<Output = T> + Copy,
{
type Item = T;
fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
assert!(self.len() == rhs.len());
self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
}
}
pub trait ArrayDotAssign {
type Item;
fn dot_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArrayDotAssign for [T]
where
T: MulAssign + Copy,
{
type Item = T;
fn dot_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() == rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
}
}
pub trait ArrayMul {
type Item;
fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayMul for [T]
where
T: Zero + One + Copy,
{
type Item = T;
fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
if self.is_empty() || rhs.is_empty() {
return vec![];
}
let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
for (i, a) in self.iter().enumerate() {
for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
*res = *res + *a * *b;
}
}
res
}
}
// transform でlen=1を指定すればNTTになる
pub trait ArrayConvolution {
type Item;
fn ntt(&mut self);
fn intt(&mut self);
fn transform(&mut self, len: usize);
fn inverse_transform(&mut self, len: usize);
fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
type Item = ModInt<{ M }>;
fn ntt(&mut self) {
self.transform(1);
}
fn intt(&mut self) {
self.inverse_transform(1);
}
fn transform(&mut self, len: usize) {
let f = self;
let n = f.len();
let k = (n / len).trailing_zeros() as usize;
assert!(len << k == n);
assert!(k <= ModInt::<{ M }>::ORDER);
let pre = &NTTPrecalcHelper::<{ M }>::A;
for ph in 1..=k {
let p = len << (k - ph);
let mut now = ModInt::one();
for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
let (x, y) = f.split_at_mut(p);
for (x, y) in x.iter_mut().zip(y.iter_mut()) {
let l = *x;
let r = *y * now;
*x = l + r;
*y = l - r;
}
now *= pre.sum_e[(!i).trailing_zeros() as usize];
}
}
}
fn inverse_transform(&mut self, len: usize) {
let f = self;
let n = f.len();
let k = (n / len).trailing_zeros() as usize;
assert!(len << k == n);
assert!(k <= ModInt::<{ M }>::ORDER);
let pre = &NTTPrecalcHelper::<{ M }>::A;
for ph in (1..=k).rev() {
let p = len << (k - ph);
let mut inow = ModInt::one();
for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
let (x, y) = f.split_at_mut(p);
for (x, y) in x.iter_mut().zip(y.iter_mut()) {
let l = *x;
let r = *y;
*x = l + r;
*y = (l - r) * inow;
}
inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
}
}
let ik = ModInt::new(2).inv().pow(k as u64);
for f in f.iter_mut() {
*f *= ik;
}
}
fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
if self.len().min(rhs.len()) <= 32 {
return self.mul(rhs);
}
const PARAM: usize = 10;
let size = self.len() + rhs.len() - 1;
let mut k = 0;
while (size + (1 << k) - 1) >> k > PARAM {
k += 1;
}
let len = (size + (1 << k) - 1) >> k;
let mut f = vec![ModInt::zero(); len << k];
let mut g = vec![ModInt::zero(); len << k];
f[..self.len()].copy_from_slice(self);
g[..rhs.len()].copy_from_slice(rhs);
f.transform(len);
g.transform(len);
let mut buf = [ModInt::zero(); 2 * PARAM - 1];
let buf = &mut buf[..(2 * len - 1)];
let pre = &NTTPrecalcHelper::<{ M }>::A;
let mut now = ModInt::one();
for (i, (f, g)) in f
.chunks_exact_mut(2 * len)
.zip(g.chunks_exact(2 * len))
.enumerate()
{
let mut r = now;
for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
buf.fill(ModInt::zero());
for (i, f) in f.iter().enumerate() {
for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
*buf = *buf + *f * *g;
}
}
f.copy_from_slice(&buf[..len]);
for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
*f = *f + r * *buf;
}
r = -r;
}
now *= pre.sum_e[(!i).trailing_zeros() as usize];
}
f.inverse_transform(len);
f.truncate(self.len() + rhs.len() - 1);
f
}
}
pub trait PolynomialOperation {
type Item;
fn eval(&self, x: Self::Item) -> Self::Item;
fn derivative(&self) -> Vec<Self::Item>;
fn integral(&self) -> Vec<Self::Item>;
}
impl<T> PolynomialOperation for [T]
where
T: Field + Copy,
{
type Item = T;
fn eval(&self, x: Self::Item) -> Self::Item {
self.iter().rfold(T::zero(), |s, a| s * x + *a)
}
fn derivative(&self) -> Vec<Self::Item> {
if self.len() <= 1 {
return vec![];
}
self[1..]
.iter()
.scan(T::one(), |s, a| {
let res = *a * *s;
*s = *s + T::one();
Some(res)
})
.collect()
}
fn integral(&self) -> Vec<Self::Item> {
if self.is_empty() {
return vec![];
}
let mut inv = vec![T::one(); self.len() + 1];
let mut val = T::zero();
for i in 1..inv.len() {
val = val + T::one();
inv[i] = val * inv[i - 1];
}
let mut iprod = T::one() / inv[self.len()];
for i in (1..inv.len()).rev() {
inv[i] = iprod * inv[i - 1] * self[i - 1];
iprod = iprod * val;
val = val - T::one();
}
inv[0] = T::zero();
inv
}
}
pub trait FPSOperation {
type Item;
fn inverse(&self, n: usize) -> Vec<Self::Item>;
fn log(&self, n: usize) -> Vec<Self::Item>;
fn exp(&self, n: usize) -> Vec<Self::Item>;
}
impl<T> FPSOperation for [T]
where
T: Field + Copy,
[T]: ArrayConvolution<Item = T>,
{
type Item = T;
fn inverse(&self, n: usize) -> Vec<Self::Item> {
assert!(self.len() > 0 && !self[0].is_zero());
if n == 0 {
return vec![];
}
let mut g = Vec::with_capacity(n);
g.push(T::one() / self[0]);
while g.len() < n {
let size = g.len();
let up = (2 * size).min(n);
let gg = g.convolution(&g);
let mut h = gg.convolution(&self[..up.min(self.len())]);
h.resize(up, T::zero());
g.extend(h[size..up].iter().map(|v| -*v));
}
g
}
fn log(&self, n: usize) -> Vec<Self::Item> {
assert!(self.len() > 0 && self[0].is_one());
if n == 0 {
return vec![];
}
let mut res = self.derivative().convolution(&self.inverse(n));
res.truncate(n - 1);
res.integral()
}
fn exp(&self, n: usize) -> Vec<Self::Item> {
assert!(self.len() > 0 && self[0].is_zero());
if n == 0 {
return vec![];
}
let mut g = Vec::with_capacity(n);
g.push(T::one());
while g.len() < n {
let size = g.len();
let up = (2 * size).min(n);
let lg = g.log(up);
let rhs = self[..up.min(self.len())].sub(&lg);
let mut h = g.convolution(&rhs);
h.resize(up, T::zero());
g.extend(h[size..up].iter().cloned());
}
g
}
}
// ---------- end array op ----------
// ---------- begin trait ----------
use std::ops::*;
pub trait Zero: Sized + Add<Self, Output = Self> {
fn zero() -> Self;
fn is_zero(&self) -> bool;
}
pub trait One: Sized + Mul<Self, Output = Self> {
fn one() -> Self;
fn is_one(&self) -> bool;
}
pub trait Group: Zero + Sub<Output = Self> + Neg<Output = Self> {}
pub trait SemiRing: Zero + One {}
pub trait Ring: SemiRing + Group {}
pub trait Field: Ring + Div<Output = Self> {}
impl<T> Group for T where T: Zero + Sub<Output = Self> + Neg<Output = Self> {}
impl<T> SemiRing for T where T: Zero + One {}
impl<T> Ring for T where T: SemiRing + Group {}
impl<T> Field for T where T: Ring + Div<Output = Self> {}
pub fn zero<T: Zero>() -> T {
T::zero()
}
pub fn one<T: One>() -> T {
T::one()
}
pub fn pow<T: One + Clone>(mut r: T, mut n: usize) -> T {
let mut t = one();
while n > 0 {
if n & 1 == 1 {
t = t * r.clone();
}
r = r.clone() * r;
n >>= 1;
}
t
}
pub fn pow_sum<T: SemiRing + Clone>(r: T, n: usize) -> T {
if n == 0 {
T::zero()
} else if n & 1 == 1 {
T::one() + r.clone() * pow_sum(r, n - 1)
} else {
let a = T::one() + r.clone();
let b = r.clone() * r;
a * pow_sum(b, n / 2)
}
}
// ---------- end trait ----------
mod util {
pub trait Join {
fn join(self, sep: &str) -> String;
}
impl<T, I> Join for I
where
I: Iterator<Item = T>,
T: std::fmt::Display,
{
fn join(self, sep: &str) -> String {
let mut s = String::new();
use std::fmt::*;
for (i, v) in self.enumerate() {
if i > 0 {
write!(&mut s, "{}", sep).ok();
}
write!(&mut s, "{}", v).ok();
}
s
}
}
}
fn middle_product(c: &[M], a: &[M]) -> Vec<M> {
assert!(c.len() >= a.len());
if a.len() <= (1 << 5) {
return c
.windows(a.len())
.map(|c| {
c.iter()
.zip(a.iter())
.fold(M::zero(), |s, a| s + *a.0 * *a.1)
})
.collect();
}
let size = c.len().next_power_of_two();
let mut x = Vec::from(c);
x.resize(size, M::zero());
let mut y = Vec::from(a);
y.reverse();
y.resize(size, M::zero());
x.transform(1);
y.transform(1);
x.dot_assign(&y);
x.inverse_transform(1);
(a.len()..=c.len()).map(|z| x[z - 1]).collect()
}
fn multipoint_evaluation(c: Vec<M>, p: Vec<M>) -> Vec<M> {
if p.is_empty() {
return vec![];
}
let n = c.len();
let m = p.len();
let mut prod = vec![vec![]; 2 * m];
for (prod, p) in prod[m..].iter_mut().zip(p.iter()) {
*prod = vec![M::one(), -*p];
}
for i in (1..m).rev() {
prod[i] = prod[2 * i].convolution(&prod[2 * i + 1]);
}
let inv = prod[1].inverse(n);
let mut c = c;
c.resize(n + m - 1, M::zero());
let mut dp = vec![vec![]; 2 * m];
dp[1] = middle_product(&c, &inv);
for i in 1..m {
dp[2 * i] = middle_product(&dp[i], &prod[2 * i + 1]);
dp[2 * i + 1] = middle_product(&dp[i], &prod[2 * i]);
}
dp[m..].iter().map(|dp| dp[0]).collect()
}
akakimidori