結果

問題 No.3180 angles sum
ユーザー erbowl
提出日時 2025-06-29 16:26:43
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 30,007 bytes
コンパイル時間 4,206 ms
コンパイル使用メモリ 304,464 KB
実行使用メモリ 7,848 KB
最終ジャッジ日時 2025-06-29 16:26:58
合計ジャッジ時間 14,197 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 12 WA * 5
権限があれば一括ダウンロードができます

ソースコード

diff #

// ギリギリな時に
#pragma GCC optimize("O3")

typedef long long ll;
typedef long double ld;

#include <bits/stdc++.h>
using namespace std;
// #include <boost/multiprecision/cpp_int.hpp>
// namespace mp = boost::multiprecision;

// modint
template <int MOD>
struct Fp {
  // inner value
  long long val;

  // constructor
  constexpr Fp() : val(0) {}
  constexpr Fp(long long v) : val(v % MOD) {
    if (val < 0) val += MOD;
  }

  // getter
  constexpr long long get() const { return val; }
  constexpr int get_mod() const { return MOD; }

  // comparison operators
  constexpr bool operator==(const Fp &r) const { return this->val == r.val; }
  constexpr bool operator!=(const Fp &r) const { return this->val != r.val; }

  // arithmetic operators
  constexpr Fp &operator+=(const Fp &r) {
    val += r.val;
    if (val >= MOD) val -= MOD;
    return *this;
  }
  constexpr Fp &operator-=(const Fp &r) {
    val -= r.val;
    if (val < 0) val += MOD;
    return *this;
  }
  constexpr Fp &operator*=(const Fp &r) {
    val = val * r.val % MOD;
    return *this;
  }
  constexpr Fp &operator/=(const Fp &r) {
    long long a = r.val, b = MOD, u = 1, v = 0;
    while (b) {
      long long t = a / b;
      a -= t * b, swap(a, b);
      u -= t * v, swap(u, v);
    }
    val = val * u % MOD;
    if (val < 0) val += MOD;
    return *this;
  }
  constexpr Fp operator+() const { return Fp(*this); }
  constexpr Fp operator-() const { return Fp(0) - Fp(*this); }
  constexpr Fp operator+(const Fp &r) const { return Fp(*this) += r; }
  constexpr Fp operator-(const Fp &r) const { return Fp(*this) -= r; }
  constexpr Fp operator*(const Fp &r) const { return Fp(*this) *= r; }
  constexpr Fp operator/(const Fp &r) const { return Fp(*this) /= r; }

  // other operators
  constexpr Fp &operator++() {
    ++val;
    if (val >= MOD) val -= MOD;
    return *this;
  }
  constexpr Fp &operator--() {
    if (val == 0) val += MOD;
    --val;
    return *this;
  }
  constexpr Fp operator++(int) {
    Fp res = *this;
    ++*this;
    return res;
  }
  constexpr Fp operator--(int) {
    Fp res = *this;
    --*this;
    return res;
  }
  friend constexpr istream &operator>>(istream &is, Fp<MOD> &x) {
    is >> x.val;
    x.val %= MOD;
    if (x.val < 0) x.val += MOD;
    return is;
  }
  friend constexpr ostream &operator<<(ostream &os, const Fp<MOD> &x) {
    return os << x.val;
  }

  // other functions
  constexpr Fp pow(long long n) const {
    Fp res(1), mul(*this);
    while (n > 0) {
      if (n & 1) res *= mul;
      mul *= mul;
      n >>= 1;
    }
    return res;
  }
  constexpr Fp inv() const {
    Fp res(1), div(*this);
    return res / div;
  }
  friend constexpr Fp<MOD> pow(const Fp<MOD> &r, long long n) {
    return r.pow(n);
  }
  friend constexpr Fp<MOD> inv(const Fp<MOD> &r) { return r.inv(); }
};

// Binomial coefficient
template <class mint>
struct BiCoef {
  vector<mint> fact_, inv_, finv_;
  constexpr BiCoef() {}
  constexpr BiCoef(int n) : fact_(n, 1), inv_(n, 1), finv_(n, 1) { init(n); }
  constexpr void init(int n) {
    fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
    int MOD = fact_[0].get_mod();
    for (int i = 2; i < n; i++) {
      fact_[i] = fact_[i - 1] * i;
      inv_[i] = -inv_[MOD % i] * (MOD / i);
      finv_[i] = finv_[i - 1] * inv_[i];
    }
  }
  constexpr mint com(int n, int k) const {
    if (n < k || n < 0 || k < 0) return 0;
    return fact_[n] * finv_[k] * finv_[n - k];
  }
  constexpr mint fact(int n) const {
    if (n < 0) return 0;
    return fact_[n];
  }
  constexpr mint inv(int n) const {
    if (n < 0) return 0;
    return inv_[n];
  }
  constexpr mint finv(int n) const {
    if (n < 0) return 0;
    return finv_[n];
  }
};

// Lazy Segment Tree
template <class Monoid, class Action>
struct LazySegmentTree {
  // various function types
  using FuncOperator = function<Monoid(Monoid, Monoid)>;
  using FuncMapping = function<Monoid(Action, Monoid)>;
  using FuncComposition = function<Action(Action, Action)>;

  // core member
  int N;
  FuncOperator OP;
  FuncMapping MAPPING;
  FuncComposition COMPOSITION;
  Monoid IDENTITY_MONOID;
  Action IDENTITY_ACTION;

  // inner data
  int log, offset;
  vector<Monoid> dat;
  vector<Action> lazy;

  // constructor
  LazySegmentTree() {}
  LazySegmentTree(int n, const FuncOperator op, const FuncMapping mapping,
                  const FuncComposition composition,
                  const Monoid &identity_monoid,
                  const Action &identity_action) {
    init(n, op, mapping, composition, identity_monoid, identity_action);
  }
  LazySegmentTree(const vector<Monoid> &v, const FuncOperator op,
                  const FuncMapping mapping, const FuncComposition composition,
                  const Monoid &identity_monoid,
                  const Action &identity_action) {
    init(v, op, mapping, composition, identity_monoid, identity_action);
  }
  void init(int n, const FuncOperator op, const FuncMapping mapping,
            const FuncComposition composition, const Monoid &identity_monoid,
            const Action &identity_action) {
    N = n, OP = op, MAPPING = mapping, COMPOSITION = composition;
    IDENTITY_MONOID = identity_monoid, IDENTITY_ACTION = identity_action;
    log = 0, offset = 1;
    while (offset < N) ++log, offset <<= 1;
    dat.assign(offset * 2, IDENTITY_MONOID);
    lazy.assign(offset * 2, IDENTITY_ACTION);
  }
  void init(const vector<Monoid> &v, const FuncOperator op,
            const FuncMapping mapping, const FuncComposition composition,
            const Monoid &identity_monoid, const Action &identity_action) {
    init((int)v.size(), op, mapping, composition, identity_monoid,
         identity_action);
    build(v);
  }
  void build(const vector<Monoid> &v) {
    assert(N == (int)v.size());
    for (int i = 0; i < N; ++i) dat[i + offset] = v[i];
    for (int k = offset - 1; k > 0; --k) pull_dat(k);
  }
  int size() const { return N; }

  // basic functions for lazy segment tree
  void pull_dat(int k) { dat[k] = OP(dat[k * 2], dat[k * 2 + 1]); }
  void apply_lazy(int k, const Action &f) {
    dat[k] = MAPPING(f, dat[k]);
    if (k < offset) lazy[k] = COMPOSITION(f, lazy[k]);
  }
  void push_lazy(int k) {
    apply_lazy(k * 2, lazy[k]);
    apply_lazy(k * 2 + 1, lazy[k]);
    lazy[k] = IDENTITY_ACTION;
  }
  void pull_dat_deep(int k) {
    for (int h = 1; h <= log; ++h) pull_dat(k >> h);
  }
  void push_lazy_deep(int k) {
    for (int h = log; h >= 1; --h) push_lazy(k >> h);
  }

  // setter and getter, update A[i], i is 0-indexed, O(log N)
  void set(int i, const Monoid &v) {
    assert(0 <= i && i < N);
    int k = i + offset;
    push_lazy_deep(k);
    dat[k] = v;
    pull_dat_deep(k);
  }
  Monoid get(int i) {
    assert(0 <= i && i < N);
    int k = i + offset;
    push_lazy_deep(k);
    return dat[k];
  }
  Monoid operator[](int i) { return get(i); }

  // apply f for index i
  void apply(int i, const Action &f) {
    assert(0 <= i && i < N);
    int k = i + offset;
    push_lazy_deep(k);
    dat[k] = MAPPING(f, dat[k]);
    pull_dat_deep(k);
  }
  // apply f for interval [l, r)
  void apply(int l, int r, const Action &f) {
    assert(0 <= l && l <= r && r <= N);
    if (l == r) return;
    l += offset, r += offset;
    for (int h = log; h >= 1; --h) {
      if (((l >> h) << h) != l) push_lazy(l >> h);
      if (((r >> h) << h) != r) push_lazy((r - 1) >> h);
    }
    int original_l = l, original_r = r;
    for (; l < r; l >>= 1, r >>= 1) {
      if (l & 1) apply_lazy(l++, f);
      if (r & 1) apply_lazy(--r, f);
    }
    l = original_l, r = original_r;
    for (int h = 1; h <= log; ++h) {
      if (((l >> h) << h) != l) pull_dat(l >> h);
      if (((r >> h) << h) != r) pull_dat((r - 1) >> h);
    }
  }

  // get prod of interval [l, r)
  Monoid prod(int l, int r) {
    assert(0 <= l && l <= r && r <= N);
    if (l == r) return IDENTITY_MONOID;
    l += offset, r += offset;
    for (int h = log; h >= 1; --h) {
      if (((l >> h) << h) != l) push_lazy(l >> h);
      if (((r >> h) << h) != r) push_lazy(r >> h);
    }
    Monoid val_left = IDENTITY_MONOID, val_right = IDENTITY_MONOID;
    for (; l < r; l >>= 1, r >>= 1) {
      if (l & 1) val_left = OP(val_left, dat[l++]);
      if (r & 1) val_right = OP(dat[--r], val_right);
    }
    return OP(val_left, val_right);
  }
  Monoid all_prod() { return dat[1]; }

  // get max r such that f(v) = True (v = prod(l, r)), O(log N)
  // f(IDENTITY) need to be True
  int max_right(const function<bool(Monoid)> f, int l = 0) {
    if (l == N) return N;
    l += offset;
    push_lazy_deep(l);
    Monoid sum = IDENTITY_MONOID;
    do {
      while (l % 2 == 0) l >>= 1;
      if (!f(OP(sum, dat[l]))) {
        while (l < offset) {
          push_lazy(l);
          l = l * 2;
          if (f(OP(sum, dat[l]))) {
            sum = OP(sum, dat[l]);
            ++l;
          }
        }
        return l - offset;
      }
      sum = OP(sum, dat[l]);
      ++l;
    } while ((l & -l) != l);  // stop if l = 2^e
    return N;
  }

  // get min l that f(get(l, r)) = True (0-indexed), O(log N)
  // f(IDENTITY) need to be True
  int min_left(const function<bool(Monoid)> f, int r = -1) {
    if (r == 0) return 0;
    if (r == -1) r = N;
    r += offset;
    push_lazy_deep(r - 1);
    Monoid sum = IDENTITY_MONOID;
    do {
      --r;
      while (r > 1 && (r % 2)) r >>= 1;
      if (!f(OP(dat[r], sum))) {
        while (r < offset) {
          push_lazy(r);
          r = r * 2 + 1;
          if (f(OP(dat[r], sum))) {
            sum = OP(dat[r], sum);
            --r;
          }
        }
        return r + 1 - offset;
      }
      sum = OP(dat[r], sum);
    } while ((r & -r) != r);
    return 0;
  }

  // debug stream
  friend ostream &operator<<(ostream &s, LazySegmentTree seg) {
    for (int i = 0; i < (int)seg.size(); ++i) {
      s << seg[i];
      if (i != (int)seg.size() - 1) s << " ";
    }
    return s;
  }

  // dump
  void dump() {
    for (int i = 0; i <= log; ++i) {
      for (int j = (1 << i); j < (1 << (i + 1)); ++j) {
        cout << "{" << dat[j] << "," << lazy[j] << "} ";
      }
      cout << endl;
    }
  }
};

// Segment Tree
template <class Monoid>
struct SegmentTree {
  using Func = function<Monoid(Monoid, Monoid)>;

  // core member
  int N;
  Func OP;
  Monoid IDENTITY;

  // inner data
  int log, offset;
  vector<Monoid> dat;

  // constructor
  SegmentTree() {}
  SegmentTree(int n, const Func &op, const Monoid &identity) {
    init(n, op, identity);
  }
  SegmentTree(const vector<Monoid> &v, const Func &op, const Monoid &identity) {
    init(v, op, identity);
  }
  void init(int n, const Func &op, const Monoid &identity) {
    N = n;
    OP = op;
    IDENTITY = identity;
    log = 0, offset = 1;
    while (offset < N) ++log, offset <<= 1;
    dat.assign(offset * 2, IDENTITY);
  }
  void init(const vector<Monoid> &v, const Func &op, const Monoid &identity) {
    init((int)v.size(), op, identity);
    build(v);
  }
  void pull(int k) { dat[k] = OP(dat[k * 2], dat[k * 2 + 1]); }
  void build(const vector<Monoid> &v) {
    assert(N == (int)v.size());
    for (int i = 0; i < N; ++i) dat[i + offset] = v[i];
    for (int k = offset - 1; k > 0; --k) pull(k);
  }
  void clear() { dat.assign(dat.size(), IDENTITY); }
  int size() const { return N; }
  Monoid operator[](int i) const { return dat[i + offset]; }

  // update A[i], i is 0-indexed, O(log N)
  void set(int i, const Monoid &v) {
    assert(0 <= i && i < N);
    int k = i + offset;
    dat[k] = v;
    while (k >>= 1) pull(k);
  }

  // get [l, r), l and r are 0-indexed, O(log N)
  Monoid prod(int l, int r) {
    assert(0 <= l && l <= r && r <= N);
    Monoid val_left = IDENTITY, val_right = IDENTITY;
    l += offset, r += offset;
    for (; l < r; l >>= 1, r >>= 1) {
      if (l & 1) val_left = OP(val_left, dat[l++]);
      if (r & 1) val_right = OP(dat[--r], val_right);
    }
    return OP(val_left, val_right);
  }
  Monoid all_prod() { return dat[1]; }

  // get max r such that f(v) = True (v = prod(l, r)), O(log N)
  // f(IDENTITY) need to be True
  int max_right(const function<bool(Monoid)> f, int l = 0) {
    if (l == N) return N;
    l += offset;
    Monoid sum = IDENTITY;
    do {
      while (l % 2 == 0) l >>= 1;
      if (!f(OP(sum, dat[l]))) {
        while (l < offset) {
          l = l * 2;
          if (f(OP(sum, dat[l]))) {
            sum = OP(sum, dat[l]);
            ++l;
          }
        }
        return l - offset;
      }
      sum = OP(sum, dat[l]);
      ++l;
    } while ((l & -l) != l);  // stop if l = 2^e
    return N;
  }

  // get min l that f(get(l, r)) = True (0-indexed), O(log N)
  // f(IDENTITY) need to be True
  int min_left(const function<bool(Monoid)> f, int r = -1) {
    if (r == 0) return 0;
    if (r == -1) r = N;
    r += offset;
    Monoid sum = IDENTITY;
    do {
      --r;
      while (r > 1 && (r % 2)) r >>= 1;
      if (!f(OP(dat[r], sum))) {
        while (r < offset) {
          r = r * 2 + 1;
          if (f(OP(dat[r], sum))) {
            sum = OP(dat[r], sum);
            --r;
          }
        }
        return r + 1 - offset;
      }
      sum = OP(dat[r], sum);
    } while ((r & -r) != r);
    return 0;
  }

  // debug
  friend ostream &operator<<(ostream &s, const SegmentTree &seg) {
    for (int i = 0; i < (int)seg.size(); ++i) {
      s << seg[i];
      if (i != (int)seg.size() - 1) s << " ";
    }
    return s;
  }
};

// Union-Find
struct UnionFind {
  // core member
  vector<int> par;

  // constructor
  UnionFind() {}
  UnionFind(int n) : par(n, -1) {}
  void init(int n) { par.assign(n, -1); }

  // core methods
  int root(int x) {
    if (par[x] < 0)
      return x;
    else
      return par[x] = root(par[x]);
  }

  bool same(int x, int y) { return root(x) == root(y); }

  bool merge(int x, int y) {
    x = root(x), y = root(y);
    if (x == y) return false;
    if (par[x] > par[y]) swap(x, y);  // merge technique
    par[x] += par[y];
    par[y] = x;
    return true;
  }

  int size(int x) { return -par[root(x)]; }

  // get groups
  vector<vector<int>> groups() {
    vector<vector<int>> member(par.size());
    for (int v = 0; v < (int)par.size(); ++v) {
      member[root(v)].push_back(v);
    }
    vector<vector<int>> res;
    for (int v = 0; v < (int)par.size(); ++v) {
      if (!member[v].empty()) res.push_back(member[v]);
    }
    return res;
  }

  // debug
  friend ostream &operator<<(ostream &s, UnionFind uf) {
    const vector<vector<int>> &gs = uf.groups();
    for (const vector<int> &g : gs) {
      s << "group: ";
      for (int v : g) s << v << " ";
      s << endl;
    }
    return s;
  }
};
namespace NTT {
long long modpow(long long a, long long n, int mod) {
  long long res = 1;
  while (n > 0) {
    if (n & 1) res = res * a % mod;
    a = a * a % mod;
    n >>= 1;
  }
  return res;
}

long long modinv(long long a, int mod) {
  long long b = mod, u = 1, v = 0;
  while (b) {
    long long t = a / b;
    a -= t * b, swap(a, b);
    u -= t * v, swap(u, v);
  }
  u %= mod;
  if (u < 0) u += mod;
  return u;
}

int calc_primitive_root(int mod) {
  if (mod == 2) return 1;
  if (mod == 167772161) return 3;
  if (mod == 469762049) return 3;
  if (mod == 754974721) return 11;
  if (mod == 998244353) return 3;
  int divs[20] = {};
  divs[0] = 2;
  int cnt = 1;
  long long x = (mod - 1) / 2;
  while (x % 2 == 0) x /= 2;
  for (long long i = 3; i * i <= x; i += 2) {
    if (x % i == 0) {
      divs[cnt++] = i;
      while (x % i == 0) x /= i;
    }
  }
  if (x > 1) divs[cnt++] = x;
  for (int g = 2;; g++) {
    bool ok = true;
    for (int i = 0; i < cnt; i++) {
      if (modpow(g, (mod - 1) / divs[i], mod) == 1) {
        ok = false;
        break;
      }
    }
    if (ok) return g;
  }
}

int get_fft_size(int N, int M) {
  int size_a = 1, size_b = 1;
  while (size_a < N) size_a <<= 1;
  while (size_b < M) size_b <<= 1;
  return max(size_a, size_b) << 1;
}

// number-theoretic transform
template <class mint>
void trans(vector<mint> &v, bool inv = false) {
  if (v.empty()) return;
  int N = (int)v.size();
  int MOD = v[0].get_mod();
  int PR = calc_primitive_root(MOD);
  static bool first = true;
  static vector<long long> vbw(30), vibw(30);
  if (first) {
    first = false;
    for (int k = 0; k < 30; ++k) {
      vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);
      vibw[k] = modinv(vbw[k], MOD);
    }
  }
  for (int i = 0, j = 1; j < N - 1; j++) {
    for (int k = N >> 1; k > (i ^= k); k >>= 1);
    if (i > j) swap(v[i], v[j]);
  }
  for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {
    long long bw = vbw[k];
    if (inv) bw = vibw[k];
    for (int i = 0; i < N; i += t) {
      mint w = 1;
      for (int j = 0; j < t / 2; ++j) {
        int j1 = i + j, j2 = i + j + t / 2;
        mint c1 = v[j1], c2 = v[j2] * w;
        v[j1] = c1 + c2;
        v[j2] = c1 - c2;
        w *= bw;
      }
    }
  }
  if (inv) {
    long long invN = modinv(N, MOD);
    for (int i = 0; i < N; ++i) v[i] = v[i] * invN;
  }
}

// for garner
static constexpr int MOD0 = 754974721;
static constexpr int MOD1 = 167772161;
static constexpr int MOD2 = 469762049;
using mint0 = Fp<MOD0>;
using mint1 = Fp<MOD1>;
using mint2 = Fp<MOD2>;
static const mint1 imod0 = 95869806;    // modinv(MOD0, MOD1);
static const mint2 imod1 = 104391568;   // modinv(MOD1, MOD2);
static const mint2 imod01 = 187290749;  // imod1 / MOD0;

// small case (T = mint, long long)
template <class T>
vector<T> naive_mul(const vector<T> &A, const vector<T> &B) {
  if (A.empty() || B.empty()) return {};
  int N = (int)A.size(), M = (int)B.size();
  vector<T> res(N + M - 1);
  for (int i = 0; i < N; ++i)
    for (int j = 0; j < M; ++j) res[i + j] += A[i] * B[j];
  return res;
}

// mul by convolution
template <class mint>
vector<mint> mul(const vector<mint> &A, const vector<mint> &B) {
  if (A.empty() || B.empty()) return {};
  int N = (int)A.size(), M = (int)B.size();
  if (min(N, M) < 30) return naive_mul(A, B);
  int MOD = A[0].get_mod();
  int size_fft = get_fft_size(N, M);
  if (MOD == 998244353) {
    vector<mint> a(size_fft), b(size_fft), c(size_fft);
    for (int i = 0; i < N; ++i) a[i] = A[i];
    for (int i = 0; i < M; ++i) b[i] = B[i];
    trans(a), trans(b);
    vector<mint> res(size_fft);
    for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];
    trans(res, true);
    res.resize(N + M - 1);
    return res;
  }
  vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
  vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
  vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
  for (int i = 0; i < N; ++i)
    a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;
  for (int i = 0; i < M; ++i)
    b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;
  trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
  for (int i = 0; i < size_fft; ++i) {
    c0[i] = a0[i] * b0[i];
    c1[i] = a1[i] * b1[i];
    c2[i] = a2[i] * b2[i];
  }
  trans(c0, true), trans(c1, true), trans(c2, true);
  mint mod0 = MOD0, mod01 = mod0 * MOD1;
  vector<mint> res(N + M - 1);
  for (int i = 0; i < N + M - 1; ++i) {
    int y0 = c0[i].val;
    int y1 = (imod0 * (c1[i] - y0)).val;
    int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
    res[i] = mod01 * y2 + mod0 * y1 + y0;
  }
  return res;
}
};  // namespace NTT

// Formal Power Series
template <typename mint>
struct FPS : vector<mint> {
  using vector<mint>::vector;

  // constructor
  constexpr FPS(const vector<mint> &r) : vector<mint>(r) {}

  // core operator
  constexpr FPS pre(int siz) const {
    return FPS(begin(*this), begin(*this) + min((int)this->size(), siz));
  }
  constexpr FPS rev() const {
    FPS res = *this;
    reverse(begin(res), end(res));
    return res;
  }
  constexpr FPS &normalize() {
    while (!this->empty() && this->back() == 0) this->pop_back();
    return *this;
  }

  // basic operator
  constexpr FPS operator-() const noexcept {
    FPS res = (*this);
    for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i];
    return res;
  }
  constexpr FPS operator+(const mint &v) const { return FPS(*this) += v; }
  constexpr FPS operator+(const FPS &r) const { return FPS(*this) += r; }
  constexpr FPS operator-(const mint &v) const { return FPS(*this) -= v; }
  constexpr FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
  constexpr FPS operator*(const mint &v) const { return FPS(*this) *= v; }
  constexpr FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
  constexpr FPS operator/(const mint &v) const { return FPS(*this) /= v; }
  constexpr FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
  constexpr FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
  constexpr FPS operator<<(int x) const { return FPS(*this) <<= x; }
  constexpr FPS operator>>(int x) const { return FPS(*this) >>= x; }
  constexpr FPS &operator+=(const mint &v) {
    if (this->empty()) this->resize(1);
    (*this)[0] += v;
    return *this;
  }
  constexpr FPS &operator+=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i];
    return this->normalize();
  }
  constexpr FPS &operator-=(const mint &v) {
    if (this->empty()) this->resize(1);
    (*this)[0] -= v;
    return *this;
  }
  constexpr FPS &operator-=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i];
    return this->normalize();
  }
  constexpr FPS &operator*=(const mint &v) {
    for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v;
    return *this;
  }
  constexpr FPS &operator*=(const FPS &r) {
    return *this = NTT::mul((*this), r);
  }
  constexpr FPS &operator/=(const mint &v) {
    assert(v != 0);
    mint iv = modinv(v);
    for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv;
    return *this;
  }

  // division, r must be normalized (r.back() must not be 0)
  constexpr FPS &operator/=(const FPS &r) {
    assert(!r.empty());
    assert(r.back() != 0);
    this->normalize();
    if (this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int need = (int)this->size() - (int)r.size() + 1;
    *this = (rev().pre(need) * r.rev().inv(need)).pre(need).rev();
    return *this;
  }
  constexpr FPS &operator%=(const FPS &r) {
    assert(!r.empty());
    assert(r.back() != 0);
    this->normalize();
    FPS q = (*this) / r;
    return *this -= q * r;
  }
  constexpr FPS &operator<<=(int x) {
    FPS res(x, 0);
    res.insert(res.end(), begin(*this), end(*this));
    return *this = res;
  }
  constexpr FPS &operator>>=(int x) {
    FPS res;
    res.insert(res.end(), begin(*this) + x, end(*this));
    return *this = res;
  }
  constexpr mint eval(const mint &v) {
    mint res = 0;
    for (int i = (int)this->size() - 1; i >= 0; --i) {
      res *= v;
      res += (*this)[i];
    }
    return res;
  }

  // advanced operation
  // df/dx
  constexpr FPS diff() const {
    int n = (int)this->size();
    FPS res(n - 1);
    for (int i = 1; i < n; ++i) res[i - 1] = (*this)[i] * i;
    return res;
  }

  // \int f dx
  constexpr FPS integral() const {
    int n = (int)this->size();
    FPS res(n + 1, 0);
    for (int i = 0; i < n; ++i) res[i + 1] = (*this)[i] / (i + 1);
    return res;
  }

  // inv(f), f[0] must not be 0
  constexpr FPS inv(int deg) const {
    assert((*this)[0] != 0);
    if (deg < 0) deg = (int)this->size();
    FPS res({mint(1) / (*this)[0]});
    for (int i = 1; i < deg; i <<= 1) {
      res = (res + res - res * res * pre(i << 1)).pre(i << 1);
    }
    res.resize(deg);
    return res;
  }
  constexpr FPS inv() const { return inv((int)this->size()); }

  // log(f) = \int f'/f dx, f[0] must be 1
  constexpr FPS log(int deg) const {
    assert((*this)[0] == 1);
    FPS res = (diff() * inv(deg)).integral();
    res.resize(deg);
    return res;
  }
  constexpr FPS log() const { return log((int)this->size()); }

  // exp(f), f[0] must be 0
  constexpr FPS exp(int deg) const {
    assert((*this)[0] == 0);
    FPS res(1, 1);
    for (int i = 1; i < deg; i <<= 1) {
      res = res * (pre(i << 1) - res.log(i << 1) + 1).pre(i << 1);
    }
    res.resize(deg);
    return res;
  }
  constexpr FPS exp() const { return exp((int)this->size()); }

  // pow(f) = exp(e * log f)
  constexpr FPS pow(long long e, int deg) const {
    if (e == 0) {
      FPS res(deg, 0);
      res[0] = 1;
      return res;
    }
    long long i = 0;
    while (i < (int)this->size() && (*this)[i] == 0) ++i;
    if (i == (int)this->size() || i > (deg - 1) / e) return FPS(deg, 0);
    mint k = (*this)[i];
    FPS res = ((((*this) >> i) / k).log(deg) * e).exp(deg) * mint(k).pow(e)
              << (e * i);
    res.resize(deg);
    return res;
  }
  constexpr FPS pow(long long e) const { return pow(e, (int)this->size()); }

  // sqrt(f), f[0] must be 1
  constexpr FPS sqrt_base(int deg) const {
    assert((*this)[0] == 1);
    mint inv2 = mint(1) / 2;
    FPS res(1, 1);
    for (int i = 1; i < deg; i <<= 1) {
      res = (res + pre(i << 1) * res.inv(i << 1)).pre(i << 1);
      for (mint &x : res) x *= inv2;
    }
    res.resize(deg);
    return res;
  }
  constexpr FPS sqrt_base() const { return sqrt_base((int)this->size()); }

  // friend operators
  friend constexpr FPS diff(const FPS &f) { return f.diff(); }
  friend constexpr FPS integral(const FPS &f) { return f.integral(); }
  friend constexpr FPS inv(const FPS &f, int deg) { return f.inv(deg); }
  friend constexpr FPS inv(const FPS &f) { return f.inv((int)f.size()); }
  friend constexpr FPS log(const FPS &f, int deg) { return f.log(deg); }
  friend constexpr FPS log(const FPS &f) { return f.log((int)f.size()); }
  friend constexpr FPS exp(const FPS &f, int deg) { return f.exp(deg); }
  friend constexpr FPS exp(const FPS &f) { return f.exp((int)f.size()); }
  friend constexpr FPS pow(const FPS &f, long long e, int deg) {
    return f.pow(e, deg);
  }
  friend constexpr FPS pow(const FPS &f, long long e) {
    return f.pow(e, (int)f.size());
  }
  friend constexpr FPS sqrt_base(const FPS &f, int deg) {
    return f.sqrt_base(deg);
  }
  friend constexpr FPS sqrt_base(const FPS &f) {
    return f.sqrt_base((int)f.size());
  }
};

using Graph = vector<vector<int>>;
struct LCA {
  vector<vector<int>> parent;  // parent[d][v] := 2^d-th parent of v
  vector<int> depth;
  LCA() {}
  LCA(const Graph &G, int r = 0) { init(G, r); }
  void init(const Graph &G, int r = 0) {
    int V = (int)G.size();
    int h = 1;
    while ((1 << h) < V) ++h;
    parent.assign(h, vector<int>(V, -1));
    depth.assign(V, -1);
    dfs(G, r, -1, 0);
    for (int i = 0; i + 1 < (int)parent.size(); ++i)
      for (int v = 0; v < V; ++v)
        if (parent[i][v] != -1) parent[i + 1][v] = parent[i][parent[i][v]];
  }
  void dfs(const Graph &G, int v, int p, int d) {
    parent[0][v] = p;
    depth[v] = d;
    for (auto e : G[v])
      if (e != p) dfs(G, e, v, d + 1);
  }
  int get(int u, int v) {
    if (depth[u] > depth[v]) swap(u, v);
    for (int i = 0; i < (int)parent.size(); ++i)
      if ((depth[v] - depth[u]) & (1 << i)) v = parent[i][v];
    if (u == v) return u;
    for (int i = (int)parent.size() - 1; i >= 0; --i) {
      if (parent[i][u] != parent[i][v]) {
        u = parent[i][u];
        v = parent[i][v];
      }
    }
    return parent[0][u];
  }
};

// ローリングハッシュ
struct RollingHash {
  static const int base1 = 1007, base2 = 2009;
  static const int mod1 = 1000000007, mod2 = 1000000009;
  vector<long long> hash1, hash2, power1, power2;

  // construct
  RollingHash(const string &S) {
    int n = (int)S.size();
    hash1.assign(n + 1, 0), hash2.assign(n + 1, 0);
    power1.assign(n + 1, 1), power2.assign(n + 1, 1);
    for (int i = 0; i < n; ++i) {
      hash1[i + 1] = (hash1[i] * base1 + S[i]) % mod1;
      hash2[i + 1] = (hash2[i] * base2 + S[i]) % mod2;
      power1[i + 1] = (power1[i] * base1) % mod1;
      power2[i + 1] = (power2[i] * base2) % mod2;
    }
  }

  // get hash value of S[left:right]
  inline long long get(int l, int r) const {
    long long res1 = hash1[r] - hash1[l] * power1[r - l] % mod1;
    if (res1 < 0) res1 += mod1;
    long long res2 = hash2[r] - hash2[l] * power2[r - l] % mod2;
    if (res2 < 0) res2 += mod2;
    return res1 * mod2 + res2;
  }

  // get hash value of S
  inline long long get() const { return hash1.back() * mod2 + hash2.back(); }

  // get lcp of S[a:] and S[b:]
  inline int getLCP(int a, int b) const {
    int len = min((int)hash1.size() - a, (int)hash1.size() - b);
    int low = 0, high = len;
    while (high - low > 1) {
      int mid = (low + high) >> 1;
      if (get(a, a + mid) != get(b, b + mid))
        high = mid;
      else
        low = mid;
    }
    return low;
  }

  // get lcp of S[a:] and T[b:]
  inline int getLCP(const RollingHash &T, int a, int b) const {
    int len = min((int)hash1.size() - a, (int)hash1.size() - b);
    int low = 0, high = len;
    while (high - low > 1) {
      int mid = (low + high) >> 1;
      if (get(a, a + mid) != T.get(b, b + mid))
        high = mid;
      else
        low = mid;
    }
    return low;
  }
};

int main() {
  // 1<<iに注意!1LL<<iを必ず使う
  // endlの代わりに'\n'を使う
  // map,unordered_mapを安易に使わない遅いから
  // multisetにすべきところをsetにして壊れるやつ
  // これがないと落ちることがある

  // using mint = Fp<998244353>;
  // using mint = ld;
  ios_base::sync_with_stdio(false);
  cin.tie(0);
  ll t;
  cin >> t;
  while (t--) {
    ld ax, ay, bx, by, cx, cy;
    cin >> ax >> ay >> bx >> by >> cx >> cy;
    ld a = atan(ay / (ax + 0.000000001));
    ld b = atan(by / (bx + 0.000000001));
    ld c = atan(cy / (cx + 0.000000001));
    // cerr << a << " " << b << " " << c << endl;
    if (abs(a + b - c) < 0.000000001 ||
        abs(abs(a + b - c) - M_PI) < 0.000000001) {
      cout << "Yes" << endl;
    } else {
      cout << "No" << endl;
    }
  }
}
0