結果

問題 No.1611 Minimum Multiple with Double Divisors
ユーザー norioc
提出日時 2025-07-21 21:16:28
言語 Scheme
(Gauche-0.9.15)
結果
TLE  
実行時間 -
コード長 6,256 bytes
コンパイル時間 387 ms
コンパイル使用メモリ 8,356 KB
実行使用メモリ 62,412 KB
最終ジャッジ日時 2025-07-21 21:16:36
合計ジャッジ時間 7,478 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample -- * 2
other TLE * 1 -- * 36
権限があれば一括ダウンロードができます

ソースコード

diff #

(use srfi.13)  ; string
(use srfi.42)  ; list-ec
(use srfi.197) ; chain
(use gauche.array)
(use gauche.collection)
(use gauche.dictionary)
(use gauche.generator)
(use gauche.sequence)
(use scheme.ideque)
(use scheme.list)
(use scheme.set)
(use scheme.sort)
(use util.combinations)
(use util.match)
(use data.queue)

(define (input)
  (string-trim-both (read-line)))

(define (ii)
  (string->number (input)))

(define (li)
  (let ((s (input)))
    (map string->number (string-split s " "))))

(define-method prn* ((seq <sequence>))
  (for-each-with-index (^(i x)
                         (when (> i 0)
                           (display " "))
                         (display x))
                       seq)
  (newline))

(define (prn . args)
  (prn* args))

(define (prn-yn b)
  (prn (if b "Yes" "No")))

(define-syntax ->/prn
  (syntax-rules ()
    ((_ x fns ...)
     (-> x fns ... prn))))

(define-syntax prn/d
  (syntax-rules ()
    ((_ expr ...)
     (with-output-to-port (current-error-port)
       (^()
         (prn expr ...))))))

(define int string->number)
(define str x->string)
(define string* (apply$ string))

(define-method min ((xs <sequence>))
  (fold min (~ xs 0) xs))
(define-method max ((xs <sequence>))
  (fold max (~ xs 0) xs))

(define (minmax . xs)
  (values->list (apply min&max xs)))
(define-method minmax ((xs <sequence>))
  (values->list (apply min&max xs)))

(define (sum xs)
  (fold + 0 xs))

(define (divmod a b)
  (values->list (div-and-mod a b)))

(define (ceildiv a b)
  (div (+ a (1- b)) b))

(define (1+ n) (+ n 1))
(define (1- n) (- n 1))
(define (!= a b) (not (= a b)))
(define (midpoint a b) (div (+ a b) 2))

(define pow
  (case-lambda
   ((a b) (expt a b))
   ((a b m) (expt-mod a b m))))

(define gcd* (apply$ gcd))
(define isqrt exact-integer-sqrt)

(define ++ string-append)

(define zip (map$ list))
(define all every)
(define any-ec any?-ec)
(define all-ec every?-ec)
(define concat concatenate)

(define (pairwise xs)
  (zip xs (cdr xs)))

(define (comb n k)
  (if (or (< k 0) (> k n))
      0
      (let loop ((i 0)
                 (x 1))
        (if (= i k)
            x
            (loop (1+ i) (div (* x (- n i)) (1+ i)))))))

#;
(define-method frequencies ((xs <sequence>))
  (rlet1 dict (make-dict)
    (for-each (^x (dict-update! dict x 1+ 0))
              xs)))

(define-method frequencies ((xs <sequence>))
  (let1 ht (make-hash-table equal-comparator)
    (for-each (^x (hash-table-update! ht x 1+ 0)) xs)

    (match-lambda*
     (('get key)
      (hash-table-get ht key 0))
     (('get key default)
      (hash-table-get ht key default))
     (('keys)
      (hash-table-keys ht))
     (('values)
      (hash-table-values ht))
     (('contains? key)
      (hash-table-contains? ht key))
     (('items)
      (hash-table->alist ht)))))

(define-macro (input! vars . body)
  (let ((binds (map (^x
                     (cond
                      ((symbol? x)
                       `((,x) (values (ii))))
                      ((list? x)
                       (if (= 1 (length x))
                           `(,x (values (li)))
                           `(,x (apply values (li)))))
                      (else
                       (error "symbol or list required, but got:" x))))
                    vars)))
    `(let*-values ,binds
       ,@body)))

(define-macro (! self quoted-name . args)
  (let ((name (cadr quoted-name)))
    `(,name ,self ,@args)))

(define-macro (d/ . args)
  (let ((ss (map (^(expr)
                   `(list ,(x->string expr) ,expr))
                 args)))
    `(prn/d (list ,@ss))))

(define mlet match-let)
(define mlet* match-let*)
(define mlet1 match-let1)

(define-macro (mfn pat . body)
  (let ((arg (gensym)))
    `(lambda (,arg)
       (mlet1 ,pat ,arg
         ,@body))))

(define-syntax count-ec
  (syntax-rules ()
    ((_ qualifiers ...)
     (sum-ec qualifiers ... 1))))

(define-method len ((coll <collection>))
  (size-of coll))

(define (accum xs)
  (define (proc a b)
    (let1 t (+ a b)
      (values t t)))
  (map-accum proc 0 xs))

(define (digits n)
  (map digit->integer (str n)))

(define (digits->int ds)
  (fold-left (^(a b) (+ (* 10 a) b)) 0 ds))

(define (-> x . fns)
  (call-with-values (^() (values x))
    (apply compose (reverse fns))))

(define (rep n thunk)
  (list-ec (: _ n)
           (thunk)))

(define (memoize fn)
  (let ((cache (make-hash-table 'equal?)))
    (lambda args
      (if (hash-table-exists? cache args)
          (hash-table-get cache args)
          (let ((val (apply fn args)))
            (hash-table-put! cache args val)
            val)))))

(define (zip-longest . args)
  (let* ((n (apply max (map length args)))
         (xxs (map (^(xs)
                     (append xs (make-list (- n (length xs)) #f)))
                   args)))
    (map (pa$ delete #f)
         (apply zip xxs))))

(define (list->set xs)
  (apply set equal-comparator xs))

(define (difference xs ys)
  (let ((excludes (list->set ys)))
    (filter (^x (not (set-contains? excludes x))) xs)))

;; <hash-table>

(define (make-dict)
  (make-hash-table eqv-comparator))

(define-method get ((ht <hash-table>) key :optional (default 0))
  (hash-table-get ht key default))

(define-method put! ((ht <hash-table>) key value)
  (hash-table-put! ht key value))

(define-method keys ((ht <hash-table>))
  (hash-table-keys ht))

(define-method values ((ht <hash-table>))
  (hash-table-values ht))


(use math.prime)

(define (factor x)
  (frequencies (naive-factorize x)))


(define (tap fn)
  (^x
   (fn x)
   x))

(define INF (ash 1 60))

(define (divide? a b)
  (zero? (mod a b)))

(define primes-upto-31 (take-while (^p (<= p 31)) *primes*))

(define (f x)
  ;; p で割り切れる回数
  (define (g p)
    (let loop ((x x)
               (cnt 0))
      (if (divide? x p)
          (loop (div x p) (1+ cnt))
          cnt)))

  (fold-ec INF
           (: p primes-upto-31)
           (:let cnt (g p))
           (if (> cnt 0))
           (* (div x (pow p cnt))
              (pow p (+ cnt cnt 1)))
           min))

(define (solve)
  (let ((X (ii)))

    (if (= X 1)
        2
        (let1 p (find (^p (not (divide? X p))) primes-upto-31)
          (min (* X p)
               (f X))))))

(input! (T)
  (dotimes (T)
    (prn (solve))))
0