結果
問題 |
No.3214 small square
|
ユーザー |
![]() |
提出日時 | 2025-07-25 21:58:46 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 441 ms / 3,000 ms |
コード長 | 10,110 bytes |
コンパイル時間 | 12,220 ms |
コンパイル使用メモリ | 403,820 KB |
実行使用メモリ | 51,100 KB |
最終ジャッジ日時 | 2025-07-26 09:30:30 |
合計ジャッジ時間 | 25,334 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 40 |
コンパイルメッセージ
warning: unused import: `std::io::Write` --> src/main.rs:1:5 | 1 | use std::io::Write; | ^^^^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: type alias `Map` is never used --> src/main.rs:4:6 | 4 | type Map<K, V> = BTreeMap<K, V>; | ^^^ | = note: `#[warn(dead_code)]` on by default warning: type alias `Set` is never used --> src/main.rs:5:6 | 5 | type Set<T> = BTreeSet<T>; | ^^^ warning: type alias `Deque` is never used --> src/main.rs:6:6 | 6 | type Deque<T> = VecDeque<T>; | ^^^^^
ソースコード
use std::io::Write; use std::collections::*; type Map<K, V> = BTreeMap<K, V>; type Set<T> = BTreeSet<T>; type Deque<T> = VecDeque<T>; fn main() { input! { n: usize, a: i64, p: [(i64, i64, i64); n], } let mut z = p.iter().flat_map(|p| [p.0, p.0 + a]).collect::<Vec<_>>(); z = (0..z.len()).flat_map(|i| { let z = 2 * z[i]; [z, z + 1] }).collect::<Vec<_>>(); z.push(std::i64::MIN + 10); z.sort(); z.dedup(); let mut d = p.iter().flat_map(|p| [p.1, p.1 + a]).collect::<Vec<_>>(); d.sort(); d.dedup(); let mut add = vec![vec![]; d.len()]; let mut del = vec![vec![]; d.len()]; for (x, y, w) in p { let p = d.lower_bound(&y); add[p].push((2 * x, w)); let p = d.lower_bound(&(y + a)); del[p].push((2 * x, w)); } let mut seg = LazySegmentTree::build(std::iter::repeat(0), z.len(), R); let mut ans = 0; for i in 0..d.len() { for (x, w) in add[i].drain(..) { let l = z.lower_bound(&x); let r = z.upper_bound(&(x + 2 * a)); seg.update(l, r, w); } ans = ans.max(seg.find(0, z.len())); for (x, w) in del[i].drain(..) { let l = z.lower_bound(&x); let r = z.upper_bound(&(x + 2 * a)); seg.update(l, r, -w); } ans = ans.max(seg.find(0, z.len())); } println!("{}", ans); } struct R; impl TE for R { type T = i64; type E = i64; fn fold(&self, l: &Self::T, r: &Self::T) -> Self::T { std::cmp::max(*l, *r) } fn eval(&self, x: &Self::T, f: &Self::E) -> Self::T { *x + *f } fn merge(&self, g: &Self::E, h: &Self::E) -> Self::E { *g + *h } fn e(&self) -> Self::T { std::i64::MIN / 2 } fn id(&self) -> Self::E { 0 } } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::<Vec<u8>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin Lazy Segment Tree ---------- pub trait TE { type T: Clone; type E: Clone; fn fold(&self, l: &Self::T, r: &Self::T) -> Self::T; fn eval(&self, x: &Self::T, f: &Self::E) -> Self::T; fn merge(&self, g: &Self::E, h: &Self::E) -> Self::E; fn e(&self) -> Self::T; fn id(&self) -> Self::E; } pub struct LazySegmentTree<R: TE> { n: usize, size: usize, bit: u32, op: R, data: Vec<(R::T, R::E)>, } impl<R: TE> LazySegmentTree<R> { pub fn new(n: usize, op: R) -> Self { assert!(n > 0); let size = n.next_power_of_two(); let bit = size.trailing_zeros(); let data = vec![(op.e(), op.id()); 2 * size]; Self { n, size, bit, op, data, } } pub fn build<I>(init: I, n: usize, op: R) -> Self where I: Iterator<Item = R::T>, { let mut seg = Self::new(n, op); for (data, ini) in seg.data[seg.size..].iter_mut().zip(init) { data.0 = ini; } for i in (1..seg.size).rev() { seg.pull(i); } seg } pub fn update(&mut self, l: usize, r: usize, f: R::E) { assert!(l <= r && r <= self.n); if l == r { return; } self.push_range(l, r); let mut s = l + self.size; let mut t = r + self.size; while s < t { if s & 1 == 1 { self.apply(s, &f); s += 1; } if t & 1 == 1 { t -= 1; self.apply(t, &f); } s >>= 1; t >>= 1; } let l = l + self.size; let r = r + self.size; for k in 1..=self.bit { if (l >> k) << k != l { self.pull(l >> k); } if (r >> k) << k != r { self.pull((r - 1) >> k); } } } pub fn find(&mut self, l: usize, r: usize) -> R::T { assert!(l <= r && r <= self.n); if l == r { return self.op.e(); } self.push_range(l, r); let mut l = l + self.size; let mut r = r + self.size; let mut p = self.op.e(); let mut q = self.op.e(); while l < r { if l & 1 == 1 { p = self.op.fold(&p, &self.data[l].0); l += 1; } if r & 1 == 1 { r -= 1; q = self.op.fold(&self.data[r].0, &q); } l >>= 1; r >>= 1; } self.op.fold(&p, &q) } pub fn set_at(&mut self, x: usize, v: R::T) { assert!(x < self.n); let x = x + self.size; for k in (1..=self.bit).rev() { self.push(x >> k); } self.data[x].0 = v; for k in 1..=self.bit { self.pull(x >> k); } } fn push_range(&mut self, l: usize, r: usize) { let l = l + self.size; let r = r + self.size; for k in (1..(self.bit + 1)).rev() { if (l >> k) << k != l { self.push(l >> k); } if (r >> k) << k != r { self.push((r - 1) >> k); } } } fn apply(&mut self, x: usize, f: &R::E) { self.data[x].0 = self.op.eval(&self.data[x].0, f); self.data[x].1 = self.op.merge(&self.data[x].1, f); } fn push(&mut self, x: usize) { let f = std::mem::replace(&mut self.data[x].1, self.op.id()); self.apply(2 * x, &f); self.apply(2 * x + 1, &f); } fn pull(&mut self, x: usize) { self.data[x].0 = self.op.fold(&self.data[2 * x].0, &self.data[2 * x + 1].0); } } // ---------- end Lazy Segment Tree ---------- // ---------- begin super slice ---------- pub trait SuperSlice { type Item; fn lower_bound(&self, key: &Self::Item) -> usize where Self::Item: Ord; fn lower_bound_by<F>(&self, f: F) -> usize where F: FnMut(&Self::Item) -> std::cmp::Ordering; fn lower_bound_by_key<K, F>(&self, key: &K, f: F) -> usize where K: Ord, F: FnMut(&Self::Item) -> K; fn upper_bound(&self, key: &Self::Item) -> usize where Self::Item: Ord; fn upper_bound_by<F>(&self, f: F) -> usize where F: FnMut(&Self::Item) -> std::cmp::Ordering; fn upper_bound_by_key<K, F>(&self, key: &K, f: F) -> usize where K: Ord, F: FnMut(&Self::Item) -> K; fn next_permutation(&mut self) -> bool where Self::Item: Ord; fn next_permutation_by<F>(&mut self, f: F) -> bool where F: FnMut(&Self::Item, &Self::Item) -> std::cmp::Ordering; fn prev_permutation(&mut self) -> bool where Self::Item: Ord; } impl<T> SuperSlice for [T] { type Item = T; fn lower_bound(&self, key: &Self::Item) -> usize where T: Ord, { self.lower_bound_by(|p| p.cmp(key)) } fn lower_bound_by<F>(&self, mut f: F) -> usize where F: FnMut(&Self::Item) -> std::cmp::Ordering, { self.binary_search_by(|p| f(p).then(std::cmp::Ordering::Greater)) .unwrap_err() } fn lower_bound_by_key<K, F>(&self, key: &K, mut f: F) -> usize where K: Ord, F: FnMut(&Self::Item) -> K, { self.lower_bound_by(|p| f(p).cmp(key)) } fn upper_bound(&self, key: &Self::Item) -> usize where T: Ord, { self.upper_bound_by(|p| p.cmp(key)) } fn upper_bound_by<F>(&self, mut f: F) -> usize where F: FnMut(&Self::Item) -> std::cmp::Ordering, { self.binary_search_by(|p| f(p).then(std::cmp::Ordering::Less)) .unwrap_err() } fn upper_bound_by_key<K, F>(&self, key: &K, mut f: F) -> usize where K: Ord, F: FnMut(&Self::Item) -> K, { self.upper_bound_by(|p| f(p).cmp(key)) } fn next_permutation(&mut self) -> bool where T: Ord, { self.next_permutation_by(|a, b| a.cmp(b)) } fn next_permutation_by<F>(&mut self, mut f: F) -> bool where F: FnMut(&Self::Item, &Self::Item) -> std::cmp::Ordering, { use std::cmp::Ordering::*; if let Some(x) = self.windows(2).rposition(|a| f(&a[0], &a[1]) == Less) { let y = self.iter().rposition(|b| f(&self[x], b) == Less).unwrap(); self.swap(x, y); self[(x + 1)..].reverse(); true } else { self.reverse(); false } } fn prev_permutation(&mut self) -> bool where T: Ord, { self.next_permutation_by(|a, b| a.cmp(b).reverse()) } } // ---------- end super slice ----------