結果
問題 |
No.3214 small square
|
ユーザー |
|
提出日時 | 2025-07-27 17:56:54 |
言語 | Rust (1.83.0 + proconio) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,909 bytes |
コンパイル時間 | 13,379 ms |
コンパイル使用メモリ | 398,444 KB |
実行使用メモリ | 51,056 KB |
最終ジャッジ日時 | 2025-07-27 17:57:24 |
合計ジャッジ時間 | 28,911 ms |
ジャッジサーバーID (参考情報) |
judge6 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 WA * 1 |
other | AC * 37 WA * 3 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); read_value!($next, [$t; len]) }}; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } #[allow(unused)] trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); } impl<T: PartialOrd> Change for T { fn chmax(&mut self, x: T) { if *self < x { *self = x; } } fn chmin(&mut self, x: T) { if *self > x { *self = x; } } } // Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array // whose elements are elements of monoid T. Note that constructing this tree requires the identity // element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+) // Reference: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp // Verified by: https://judge.yosupo.jp/submission/68794 // https://atcoder.jp/contests/joisc2021/submissions/27734236 pub trait ActionRing { type T: Clone + Copy; // data type U: Clone + Copy + PartialEq + Eq; // action fn biop(x: Self::T, y: Self::T) -> Self::T; fn update(x: Self::T, a: Self::U) -> Self::T; fn upop(fst: Self::U, snd: Self::U) -> Self::U; fn e() -> Self::T; fn upe() -> Self::U; // identity for upop } pub struct LazySegTree<R: ActionRing> { n: usize, dep: usize, dat: Vec<R::T>, lazy: Vec<R::U>, } impl<R: ActionRing> LazySegTree<R> { pub fn new(n_: usize) -> Self { let mut n = 1; let mut dep = 0; while n < n_ { n *= 2; dep += 1; } // n is a power of 2 LazySegTree { n: n, dep: dep, dat: vec![R::e(); 2 * n], lazy: vec![R::upe(); n], } } #[allow(unused)] pub fn with(a: &[R::T]) -> Self { let mut ret = Self::new(a.len()); let n = ret.n; for i in 0..a.len() { ret.dat[n + i] = a[i]; } for i in (1..n).rev() { ret.update_node(i); } ret } #[inline] pub fn set(&mut self, idx: usize, x: R::T) { debug_assert!(idx < self.n); self.apply_any(idx, |_t| x); } #[inline] pub fn apply(&mut self, idx: usize, f: R::U) { debug_assert!(idx < self.n); self.apply_any(idx, |t| R::update(t, f)); } pub fn apply_any<F: Fn(R::T) -> R::T>(&mut self, idx: usize, f: F) { debug_assert!(idx < self.n); let idx = idx + self.n; for i in (1..self.dep + 1).rev() { self.push(idx >> i); } self.dat[idx] = f(self.dat[idx]); for i in 1..self.dep + 1 { self.update_node(idx >> i); } } pub fn get(&mut self, idx: usize) -> R::T { debug_assert!(idx < self.n); let idx = idx + self.n; for i in (1..self.dep + 1).rev() { self.push(idx >> i); } self.dat[idx] } /* [l, r) (note: half-inclusive) */ #[inline] pub fn query(&mut self, rng: std::ops::Range<usize>) -> R::T { let (l, r) = (rng.start, rng.end); debug_assert!(l <= r && r <= self.n); if l == r { return R::e(); } let mut l = l + self.n; let mut r = r + self.n; for i in (1..self.dep + 1).rev() { if ((l >> i) << i) != l { self.push(l >> i); } if ((r >> i) << i) != r { self.push((r - 1) >> i); } } let mut sml = R::e(); let mut smr = R::e(); while l < r { if (l & 1) != 0 { sml = R::biop(sml, self.dat[l]); l += 1; } if (r & 1) != 0 { r -= 1; smr = R::biop(self.dat[r], smr); } l >>= 1; r >>= 1; } R::biop(sml, smr) } /* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */ #[inline] pub fn update(&mut self, rng: std::ops::Range<usize>, f: R::U) { let (l, r) = (rng.start, rng.end); debug_assert!(l <= r && r <= self.n); if l == r { return; } let mut l = l + self.n; let mut r = r + self.n; for i in (1..self.dep + 1).rev() { if ((l >> i) << i) != l { self.push(l >> i); } if ((r >> i) << i) != r { self.push((r - 1) >> i); } } { let l2 = l; let r2 = r; while l < r { if (l & 1) != 0 { self.all_apply(l, f); l += 1; } if (r & 1) != 0 { r -= 1; self.all_apply(r, f); } l >>= 1; r >>= 1; } l = l2; r = r2; } for i in 1..self.dep + 1 { if ((l >> i) << i) != l { self.update_node(l >> i); } if ((r >> i) << i) != r { self.update_node((r - 1) >> i); } } } #[inline] fn update_node(&mut self, k: usize) { self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]); } fn all_apply(&mut self, k: usize, f: R::U) { self.dat[k] = R::update(self.dat[k], f); if k < self.n { self.lazy[k] = R::upop(self.lazy[k], f); } } fn push(&mut self, k: usize) { let val = self.lazy[k]; self.all_apply(2 * k, val); self.all_apply(2 * k + 1, val); self.lazy[k] = R::upe(); } } enum AddMax {} impl ActionRing for AddMax { type T = i64; // data type U = i64; // action, a |-> x |-> a + x fn biop(x: Self::T, y: Self::T) -> Self::T { std::cmp::max(x, y) } fn update(x: Self::T, a: Self::U) -> Self::T { x + a } fn upop(fst: Self::U, snd: Self::U) -> Self::U { fst + snd } fn e() -> Self::T { 0 } fn upe() -> Self::U { // identity for upop 0 } } #[allow(unused)] trait Bisect<T> { fn lower_bound(&self, val: &T) -> usize; fn upper_bound(&self, val: &T) -> usize; } impl<T: Ord> Bisect<T> for [T] { fn lower_bound(&self, val: &T) -> usize { let mut pass = self.len() + 1; let mut fail = 0; while pass - fail > 1 { let mid = (pass + fail) / 2; if &self[mid - 1] >= val { pass = mid; } else { fail = mid; } } pass - 1 } fn upper_bound(&self, val: &T) -> usize { let mut pass = self.len() + 1; let mut fail = 0; while pass - fail > 1 { let mid = (pass + fail) / 2; if &self[mid - 1] > val { pass = mid; } else { fail = mid; } } pass - 1 } } // Solved with hints fn main() { input! { n: usize, a: i64, xyv: [(i64, i64, i64); n], } let mut xs = vec![]; let mut events = vec![]; for &(x, y, v) in &xyv { for b in -1..=1 { xs.push(2 * x + b); xs.push(2 * x + 2 * a + b); } events.push((2 * y, 0, x, v)); for b in [-1, 1] { events.push((2 * y + b, 1, 0, 0)); events.push((2 * y + 2 * a + b, 1, 0, 0)); } events.push((2 * y + 2 * a, 0, x, -v)); } events.sort(); xs.sort(); xs.dedup(); let mut st = LazySegTree::<AddMax>::new(xs.len()); let mut ans = 0; for (_, ty, x, v) in events { if ty != 1 { let idx0 = xs.lower_bound(&(2 * x)); let idx1 = xs.upper_bound(&(2 * x + 2 * a)); st.update(idx0..idx1, v); } else { let tmp = st.query(0..xs.len()); ans = ans.max(tmp); } } println!("{ans}"); }