結果
| 問題 |
No.3214 small square
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-07-27 18:00:07 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 508 ms / 3,000 ms |
| コード長 | 8,908 bytes |
| コンパイル時間 | 25,014 ms |
| コンパイル使用メモリ | 399,220 KB |
| 実行使用メモリ | 56,888 KB |
| 最終ジャッジ日時 | 2025-07-27 18:00:47 |
| 合計ジャッジ時間 | 30,395 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge6 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
#[allow(unused)]
trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); }
impl<T: PartialOrd> Change for T {
fn chmax(&mut self, x: T) { if *self < x { *self = x; } }
fn chmin(&mut self, x: T) { if *self > x { *self = x; } }
}
// Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
// whose elements are elements of monoid T. Note that constructing this tree requires the identity
// element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
// Reference: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp
// Verified by: https://judge.yosupo.jp/submission/68794
// https://atcoder.jp/contests/joisc2021/submissions/27734236
pub trait ActionRing {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn biop(x: Self::T, y: Self::T) -> Self::T;
fn update(x: Self::T, a: Self::U) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn e() -> Self::T;
fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
n: usize,
dep: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: ActionRing> LazySegTree<R> {
pub fn new(n_: usize) -> Self {
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
LazySegTree {
n: n,
dep: dep,
dat: vec![R::e(); 2 * n],
lazy: vec![R::upe(); n],
}
}
#[allow(unused)]
pub fn with(a: &[R::T]) -> Self {
let mut ret = Self::new(a.len());
let n = ret.n;
for i in 0..a.len() {
ret.dat[n + i] = a[i];
}
for i in (1..n).rev() {
ret.update_node(i);
}
ret
}
#[inline]
pub fn set(&mut self, idx: usize, x: R::T) {
debug_assert!(idx < self.n);
self.apply_any(idx, |_t| x);
}
#[inline]
pub fn apply(&mut self, idx: usize, f: R::U) {
debug_assert!(idx < self.n);
self.apply_any(idx, |t| R::update(t, f));
}
pub fn apply_any<F: Fn(R::T) -> R::T>(&mut self, idx: usize, f: F) {
debug_assert!(idx < self.n);
let idx = idx + self.n;
for i in (1..self.dep + 1).rev() {
self.push(idx >> i);
}
self.dat[idx] = f(self.dat[idx]);
for i in 1..self.dep + 1 {
self.update_node(idx >> i);
}
}
pub fn get(&mut self, idx: usize) -> R::T {
debug_assert!(idx < self.n);
let idx = idx + self.n;
for i in (1..self.dep + 1).rev() {
self.push(idx >> i);
}
self.dat[idx]
}
/* [l, r) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, rng: std::ops::Range<usize>) -> R::T {
let (l, r) = (rng.start, rng.end);
debug_assert!(l <= r && r <= self.n);
if l == r { return R::e(); }
let mut l = l + self.n;
let mut r = r + self.n;
for i in (1..self.dep + 1).rev() {
if ((l >> i) << i) != l { self.push(l >> i); }
if ((r >> i) << i) != r { self.push((r - 1) >> i); }
}
let mut sml = R::e();
let mut smr = R::e();
while l < r {
if (l & 1) != 0 {
sml = R::biop(sml, self.dat[l]);
l += 1;
}
if (r & 1) != 0 {
r -= 1;
smr = R::biop(self.dat[r], smr);
}
l >>= 1;
r >>= 1;
}
R::biop(sml, smr)
}
/* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */
#[inline]
pub fn update(&mut self, rng: std::ops::Range<usize>, f: R::U) {
let (l, r) = (rng.start, rng.end);
debug_assert!(l <= r && r <= self.n);
if l == r { return; }
let mut l = l + self.n;
let mut r = r + self.n;
for i in (1..self.dep + 1).rev() {
if ((l >> i) << i) != l { self.push(l >> i); }
if ((r >> i) << i) != r { self.push((r - 1) >> i); }
}
{
let l2 = l;
let r2 = r;
while l < r {
if (l & 1) != 0 {
self.all_apply(l, f);
l += 1;
}
if (r & 1) != 0 {
r -= 1;
self.all_apply(r, f);
}
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for i in 1..self.dep + 1 {
if ((l >> i) << i) != l { self.update_node(l >> i); }
if ((r >> i) << i) != r { self.update_node((r - 1) >> i); }
}
}
#[inline]
fn update_node(&mut self, k: usize) {
self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]);
}
fn all_apply(&mut self, k: usize, f: R::U) {
self.dat[k] = R::update(self.dat[k], f);
if k < self.n {
self.lazy[k] = R::upop(self.lazy[k], f);
}
}
fn push(&mut self, k: usize) {
let val = self.lazy[k];
self.all_apply(2 * k, val);
self.all_apply(2 * k + 1, val);
self.lazy[k] = R::upe();
}
}
enum AddMax {}
impl ActionRing for AddMax {
type T = i64; // data
type U = i64; // action, a |-> x |-> a + x
fn biop(x: Self::T, y: Self::T) -> Self::T {
std::cmp::max(x, y)
}
fn update(x: Self::T, a: Self::U) -> Self::T {
x + a
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
fst + snd
}
fn e() -> Self::T {
0
}
fn upe() -> Self::U { // identity for upop
0
}
}
#[allow(unused)]
trait Bisect<T> {
fn lower_bound(&self, val: &T) -> usize;
fn upper_bound(&self, val: &T) -> usize;
}
impl<T: Ord> Bisect<T> for [T] {
fn lower_bound(&self, val: &T) -> usize {
let mut pass = self.len() + 1;
let mut fail = 0;
while pass - fail > 1 {
let mid = (pass + fail) / 2;
if &self[mid - 1] >= val {
pass = mid;
} else {
fail = mid;
}
}
pass - 1
}
fn upper_bound(&self, val: &T) -> usize {
let mut pass = self.len() + 1;
let mut fail = 0;
while pass - fail > 1 {
let mid = (pass + fail) / 2;
if &self[mid - 1] > val {
pass = mid;
} else {
fail = mid;
}
}
pass - 1
}
}
// Solved with hints
fn main() {
input! {
n: usize, a: i64,
xyv: [(i64, i64, i64); n],
}
let mut xs = vec![];
let mut events = vec![];
for &(x, y, v) in &xyv {
for b in -1..=1 {
xs.push(2 * x + b);
xs.push(2 * x + 2 * a + b);
}
events.push((2 * y, 0, x, v));
for b in -1..=1 {
events.push((2 * y + b, 1, 0, 0));
events.push((2 * y + 2 * a + b, 1, 0, 0));
}
events.push((2 * y + 2 * a, 2, x, -v));
}
events.sort();
xs.sort(); xs.dedup();
let mut st = LazySegTree::<AddMax>::new(xs.len());
let mut ans = 0;
for (_, ty, x, v) in events {
if ty != 1 {
let idx0 = xs.lower_bound(&(2 * x));
let idx1 = xs.upper_bound(&(2 * x + 2 * a));
st.update(idx0..idx1, v);
} else {
let tmp = st.query(0..xs.len());
ans = ans.max(tmp);
}
}
println!("{ans}");
}