結果

問題 No.1171 Runs in Subsequences
ユーザー ecottea
提出日時 2025-08-03 03:53:35
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 71 ms / 2,000 ms
コード長 49,283 bytes
コンパイル時間 16,325 ms
コンパイル使用メモリ 380,520 KB
実行使用メモリ 7,720 KB
最終ジャッジ日時 2025-08-03 03:53:54
合計ジャッジ時間 18,062 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 18
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline int getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint998244353;
using mint = static_modint<(int)1e9+7>;
//using mint = modint; // mint::set_mod(m);

using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
int mute_dump = 0;
int frac_print = 0;
#if __has_include(<atcoder/all>)
namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
#endif
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


// 愚直
mint naive(const string& s) {
	int n = sz(s);

	mint res = 0;

	repb(set, n) {
		char c = '-'; res++;
		repis(i, set) {
			if (c != '-') {
				if (c != s[i]) res++;
			}
			c = s[i];
		}
	}

	return res - 1;
}


//【行列】
/*
* Matrix<T>(int n, int m) : O(n m)
*	n×m 零行列で初期化する.
*
* Matrix<T>(int n) : O(n^2)
*	n×n 単位行列で初期化する.
*
* Matrix<T>(vvT a) : O(n m)
*	二次元配列 a[0..n)[0..m) の要素で初期化する.
*
* bool empty() : O(1)
*	行列が空かを返す.
*
* A + B : O(n m)
*	n×m 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n m)
*	n×m 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n m)
*	n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n m)
*	n×m 行列 A と n 次元列ベクトル x の積を返す.
*
* x * A : O(n m)(やや遅い)
*	m 次元行ベクトル x と n×m 行列 A の積を返す.
*
* A * B : O(n m l)
*	n×m 行列 A と m×l 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
*	自身を d 乗した行列を返す.
*/
template <class T>
struct Matrix {
	int n, m; // 行列のサイズ(n 行 m 列)
	vector<vector<T>> v; // 行列の成分

	// n×m 零行列で初期化する.
	Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}

	// n×n 単位行列で初期化する.
	Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }

	// 二次元配列 a[0..n)[0..m) の要素で初期化する.
	Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
	Matrix() : n(0), m(0) {}

	// 代入
	Matrix(const Matrix&) = default;
	Matrix& operator=(const Matrix&) = default;

	// アクセス
	inline vector<T> const& operator[](int i) const { return v[i]; }
	inline vector<T>& operator[](int i) {
		// verify : https://judge.yosupo.jp/problem/matrix_product

		// inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった.
		return v[i];
	}

	// 入力
	friend istream& operator>>(istream& is, Matrix& a) {
		rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
		return is;
	}

	// 行の追加
	void push_back(const vector<T>& a) {
		Assert(sz(a) == m);
		v.push_back(a);
		n++;
	}

	// 行の削除
	void pop_back() {
		Assert(n > 0);
		v.pop_back();
		n--;
	}

	// サイズ変更
	void resize(int n_) {
		v.resize(n_);
		n = n_;
	}

	void resize(int n_, int m_) {
		n = n_;
		m = m_;

		v.resize(n);
		rep(i, n) v[i].resize(m);
	}

	// 空か
	bool empty() const { return min(n, m) == 0; }

	// 比較
	bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
	bool operator!=(const Matrix& b) const { return !(*this == b); }

	// 加算,減算,スカラー倍
	Matrix& operator+=(const Matrix& b) {
		rep(i, n) rep(j, m) v[i][j] += b[i][j];
		return *this;
	}
	Matrix& operator-=(const Matrix& b) {
		rep(i, n) rep(j, m) v[i][j] -= b[i][j];
		return *this;
	}
	Matrix& operator*=(const T& c) {
		rep(i, n) rep(j, m) v[i][j] *= c;
		return *this;
	}
	Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
	Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
	Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
	friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
	Matrix operator-() const { return Matrix(*this) *= T(-1); }

	// 行列ベクトル積 : O(m n)
	vector<T> operator*(const vector<T>& x) const {
		vector<T> y(n);
		rep(i, n) rep(j, m)	y[i] += v[i][j] * x[j];
		return y;
	}

	// ベクトル行列積 : O(m n)
	friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
		vector<T> y(a.m);
		rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
		return y;
	}

	// 積:O(n^3)
	Matrix operator*(const Matrix& b) const {
		// verify : https://judge.yosupo.jp/problem/matrix_product

		Matrix res(n, b.m);
		rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j];
		return res;
	}
	Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }

	// 累乗:O(n^3 log d)
	Matrix pow(ll d) const {
		// verify : https://judge.yosupo.jp/problem/pow_of_matrix

		Matrix res(n), pow2 = *this;
		while (d > 0) {
			if (d & 1) res *= pow2;
			pow2 *= pow2;
			d >>= 1;
		}
		return res;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Matrix& a) {
		rep(i, a.n) {
			os << "[";
			rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
			if (i < a.n - 1) os << "\n";
		}
		return os;
	}
#endif
};


//【行簡約形(行交換なし)】O(n m min(n, m))
/*
* 行基本変形(行交換なし)で n×m 行列 A を行簡約形に変形し,ピボット位置のリストを返す.
*/
template <class T>
vector<pii> row_reduced_form(Matrix<T>& A) {
	int n = A.n, m = A.m;
	
	vector<pii> piv;
	piv.reserve(min(n, m));

	// 未確定の列を記録しておくリスト
	list<int> rjs;
	rep(j, m) rjs.push_back(j);

	rep(i, n) {
		// 第 i 行の係数を左から走査し非 0 を見つける.
		auto it = rjs.begin();
		for (; it != rjs.end(); it++) if (A[i][*it] != 0) break;

		// 第 i 行の全てが 0 なら無視する.
		if (it == rjs.end()) continue;

		// A[i][j] をピボットに選択する.
		int j = *it;
		rjs.erase(it);
		piv.emplace_back(i, j);

		// A[i][j] が 1 になるよう行全体を A[i][j] で割る.
		T Aij_inv = T(1) / A[i][j];
		repi(j2, j, m - 1) A[i][j2] *= Aij_inv;

		// 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる.
		rep(i2, n) if (A[i2][j] != 0 && i2 != i) {
			T mul = A[i2][j];
			repi(j2, j, m - 1) A[i2][j2] -= A[i][j2] * mul;
		}
	}

	return piv;
}


//【逆行列】O(n^3)
/*
* n 次正方行列 mat の逆行列を返す(存在しなければ空)
*/
template <class T>
Matrix<T> inverse_matrix(const Matrix<T>& mat) {
	// verify : https://judge.yosupo.jp/problem/inverse_matrix

	int n = mat.n;

	// 元の行列 mat と単位行列を繋げた拡大行列 v を作る.
	vector<vector<T>> v(n, vector<T>(2 * n));
	rep(i, n) rep(j, n) {
		v[i][j] = mat[i][j];
		if (i == j) v[i][n + j] = 1;
	}
	int m = 2 * n;

	// 注目位置を (i, j)(i 行目かつ j 列目)とする.
	int i = 0, j = 0;

	// 拡大行列に対して行基本変形を行い,左側を単位行列にすることを目指す.
	while (i < n && j < m) {
		// 同じ列の下方の行から非 0 成分を見つける.
		int i2 = i;
		while (i2 < n && v[i2][j] == T(0)) i2++;

		// 見つからなかったら全て 0 の列があったので mat は非正則
		if (i2 == n) return Matrix<T>();

		// 見つかったら i 行目とその行を入れ替える.
		if (i != i2) swap(v[i], v[i2]);

		// v[i][j] が 1 になるよう行全体を v[i][j] で割る.
		T vij_inv = T(1) / v[i][j];
		repi(j2, j, m - 1) v[i][j2] *= vij_inv;

		// v[i][j] と同じ列の成分が全て 0 になるよう i 行目を定数倍して減じる.
		rep(i2, n) {
			// i 行目だけは引かない.
			if (i2 == i) continue;

			T mul = v[i2][j];
			repi(j2, j, m - 1) v[i2][j2] -= v[i][j2] * mul;
		}

		// 注目位置を右下に移す.
		i++; j++;
	}

	// 拡大行列の右半分が mat の逆行列なのでコピーする.
	Matrix<T> mat_inv(n, n);
	rep(i, n) rep(j, n) mat_inv[i][j] = v[i][n + j];

	return mat_inv;
}


// 遷移行列の係数を計算し,埋め込み用のコードを出力する.
// 待てない場合は len_max とか LB_max とかを指定する.
void embed_coefs(int K, int len_max = INF, int LB_max = INF) {
	vector<string> ss{""};
	int idx = 0;

	vector<pii> piv_prv;

	repi(len, 0, INF) {
		dump("----------- len:", len, "--------------");

		int L = sz(ss); int LB = min(L, LB_max);
		dump("L:", L);
		
		// (i,j) 成分が naive(ss[i] + ss[j]) であるような行列 mat を得る.
		Matrix<mint> mat(L, LB);
		rep(i, L) rep(j, LB) mat[i][j] = naive(ss[i] + ss[j]);
		//dump("mat:"); dump(mat);

		// mat に対して行基本変形を行いピボット位置のリスト piv を得る.
		auto piv = row_reduced_form(mat);
		dump("piv(", sz(piv), "):"); dump(piv);

		// rank の更新がなかったら必要な情報は揃ったとみなして打ち切る.
		if (len == len_max || (sz(piv) > 0 && sz(piv) == sz(piv_prv))) {
			int R = sz(piv);
			
			// 選択した行と列をそれぞれ昇順に並べて is, js とする(0 始まりのはず)
			vi is(R), js(R);
			rep(r, R) tie(is[r], js[r]) = piv[r];
			sort(all(js));

			// 基底の変換行列 P を得る.
			Matrix<mint> P(R, R);
			rep(i, R) rep(j, R) P[i][j] = naive(ss[is[i]] + ss[js[j]]);

			// P の逆行列 P_inv を得る.
			auto P_inv = inverse_matrix(P);

			// 各文字に対応する表現行列を得る.
			vector<Matrix<mint>> mats(K, Matrix<mint>(R, R));
			rep(k, K) {
				char c = '0' + k;
				rep(i, R) rep(j, R) mats[k][i][j] = naive(ss[is[i]] + c + ss[js[j]]);
				mats[k] = mats[k] * P_inv;
			}

			// 雑に圧縮しようとしたけどあんま効いてない
			//mt19937_64 mt((int)time(NULL));
			//uniform_int_distribution<ll> rnd(0, (ll)1e18);			
			//rep(hoge, 10000) {
			//	int i = rnd(mt) % sz(mats);
			//	int j = rnd(mt) % sz(mats);
			//	mats.push_back(mats[i] * mats[j]);
			//}
			//unordered_map<int, int> cnt;
			//rep(i, R) rep(j, R) cnt[mats.back()[i][j].val()]++;
			//dump(cnt); dump(sz(cnt)); exit(0);

			vector<tuple<int, int, mint>> elems; vi offsets{ 0 };
			rep(k, K) {
				rep(i, R) rep(j, R) {
					if (mats[k][i][j] != 0) elems.emplace_back(i, j, mats[k][i][j]);
				}
				offsets.push_back(sz(elems));
			}

			// 埋め込み用の文字列を出力する.
			auto to_signed_string = [](mint x) {
				int v = x.val();
				int mod = mint::mod();
				if (2 * v > mod) v -= mod;
				return to_string(v);
			};
			string eb = "constexpr int DIM = ";
			eb += to_string(R);
			eb += ";\n";
			eb += "constexpr int COL = ";
			eb += to_string(K);
			eb += ";\n";
			eb += "";
			eb += "tuple<int, int, VTYPE> matAs[] = {";
			for (auto [i, j, v] : elems) {
				eb += "{";
				eb += to_string(i);
				eb += ",";
				eb += to_string(j);
				eb += ",";
				eb += to_signed_string(v);
				eb += "},";
			}
			eb.pop_back();
			eb += "};\n";
			eb += "int offset[COL + 1] = {";
			repi(k, 0, K) eb += to_string(offsets[k]) + ",";
			eb.pop_back();
			eb += "};\n";
			eb += "VTYPE vecQ[DIM] = {";
			rep(i, R) eb += to_signed_string(P[i][0]) + ",";
			eb.pop_back();
			eb += "};\n";
			cout << eb;

			exit(0);
		}

		// 基底ガチャ
		//mt19937_64 mt((int)time(NULL)); shuffle(ss.begin() + 1, ss.end(), mt);
		
		// 次に長い文字列たちを ss に追加する.
		int nidx = sz(ss);
		repi(i, idx, nidx - 1) rep(k, K) {
			ss.push_back(ss[i]);
			ss.back().push_back('0' + k);
		}
		idx = nidx;

		piv_prv = move(piv);
	}
}


template <class VTYPE>
VTYPE solve(const string& s) {
	// --------------- embed_coefs() からの出力を貼る ----------------
	constexpr int DIM = 28;
	constexpr int COL = 26;
	tuple<int, int, VTYPE> matAs[] = { {0,1,1},{1,0,-2},{1,1,3},{2,1,1},{2,2,-1},{2,27,1},{3,1,1},{3,2,-2},{3,3,1},{3,27,1},{4,1,1},{4,2,-2},{4,4,1},{4,27,1},{5,1,1},{5,2,-2},{5,5,1},{5,27,1},{6,1,1},{6,2,-2},{6,6,1},{6,27,1},{7,1,1},{7,2,-2},{7,7,1},{7,27,1},{8,1,1},{8,2,-2},{8,8,1},{8,27,1},{9,1,1},{9,2,-2},{9,9,1},{9,27,1},{10,1,1},{10,2,-2},{10,10,1},{10,27,1},{11,1,1},{11,2,-2},{11,11,1},{11,27,1},{12,1,1},{12,2,-2},{12,12,1},{12,27,1},{13,1,1},{13,2,-2},{13,13,1},{13,27,1},{14,1,1},{14,2,-2},{14,14,1},{14,27,1},{15,1,1},{15,2,-2},{15,15,1},{15,27,1},{16,1,1},{16,2,-2},{16,16,1},{16,27,1},{17,1,1},{17,2,-2},{17,17,1},{17,27,1},{18,1,1},{18,2,-2},{18,18,1},{18,27,1},{19,1,1},{19,2,-2},{19,19,1},{19,27,1},{20,1,1},{20,2,-2},{20,20,1},{20,27,1},{21,1,1},{21,2,-2},{21,21,1},{21,27,1},{22,1,1},{22,2,-2},{22,22,1},{22,27,1},{23,1,1},{23,2,-2},{23,23,1},{23,27,1},{24,1,1},{24,2,-2},{24,24,1},{24,27,1},{25,1,1},{25,2,-2},{25,25,1},{25,27,1},{26,1,1},{26,2,-2},{26,26,1},{26,27,1},{27,0,2},{27,1,1},{27,2,-6},{27,27,4},{0,2,1},{1,27,1},{2,0,-2},{2,2,3},{3,1,-1},{3,3,1},{3,27,1},{4,1,-1},{4,4,1},{4,27,1},{5,1,-1},{5,5,1},{5,27,1},{6,1,-1},{6,6,1},{6,27,1},{7,1,-1},{7,7,1},{7,27,1},{8,1,-1},{8,8,1},{8,27,1},{9,1,-1},{9,9,1},{9,27,1},{10,1,-1},{10,10,1},{10,27,1},{11,1,-1},{11,11,1},{11,27,1},{12,1,-1},{12,12,1},{12,27,1},{13,1,-1},{13,13,1},{13,27,1},{14,1,-1},{14,14,1},{14,27,1},{15,1,-1},{15,15,1},{15,27,1},{16,1,-1},{16,16,1},{16,27,1},{17,1,-1},{17,17,1},{17,27,1},{18,1,-1},{18,18,1},{18,27,1},{19,1,-1},{19,19,1},{19,27,1},{20,1,-1},{20,20,1},{20,27,1},{21,1,-1},{21,21,1},{21,27,1},{22,1,-1},{22,22,1},{22,27,1},{23,1,-1},{23,23,1},{23,27,1},{24,1,-1},{24,24,1},{24,27,1},{25,1,-1},{25,25,1},{25,27,1},{26,1,-1},{26,26,1},{26,27,1},{27,1,-2},{27,27,3},{0,3,1},{1,2,-2},{1,3,2},{1,27,1},{2,1,-1},{2,2,-1},{2,3,2},{2,27,1},{3,0,-2},{3,3,3},{4,1,-1},{4,2,-2},{4,3,2},{4,4,1},{4,27,1},{5,1,-1},{5,2,-2},{5,3,2},{5,5,1},{5,27,1},{6,1,-1},{6,2,-2},{6,3,2},{6,6,1},{6,27,1},{7,1,-1},{7,2,-2},{7,3,2},{7,7,1},{7,27,1},{8,1,-1},{8,2,-2},{8,3,2},{8,8,1},{8,27,1},{9,1,-1},{9,2,-2},{9,3,2},{9,9,1},{9,27,1},{10,1,-1},{10,2,-2},{10,3,2},{10,10,1},{10,27,1},{11,1,-1},{11,2,-2},{11,3,2},{11,11,1},{11,27,1},{12,1,-1},{12,2,-2},{12,3,2},{12,12,1},{12,27,1},{13,1,-1},{13,2,-2},{13,3,2},{13,13,1},{13,27,1},{14,1,-1},{14,2,-2},{14,3,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,3,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,3,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,3,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,3,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,3,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,3,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,3,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,3,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,3,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,3,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,3,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,3,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,3,4},{27,27,5},{0,4,1},{1,2,-2},{1,4,2},{1,27,1},{2,1,-1},{2,2,-1},{2,4,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,4,2},{3,27,1},{4,0,-2},{4,4,3},{5,1,-1},{5,2,-2},{5,4,2},{5,5,1},{5,27,1},{6,1,-1},{6,2,-2},{6,4,2},{6,6,1},{6,27,1},{7,1,-1},{7,2,-2},{7,4,2},{7,7,1},{7,27,1},{8,1,-1},{8,2,-2},{8,4,2},{8,8,1},{8,27,1},{9,1,-1},{9,2,-2},{9,4,2},{9,9,1},{9,27,1},{10,1,-1},{10,2,-2},{10,4,2},{10,10,1},{10,27,1},{11,1,-1},{11,2,-2},{11,4,2},{11,11,1},{11,27,1},{12,1,-1},{12,2,-2},{12,4,2},{12,12,1},{12,27,1},{13,1,-1},{13,2,-2},{13,4,2},{13,13,1},{13,27,1},{14,1,-1},{14,2,-2},{14,4,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,4,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,4,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,4,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,4,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,4,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,4,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,4,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,4,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,4,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,4,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,4,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,4,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,4,4},{27,27,5},{0,5,1},{1,2,-2},{1,5,2},{1,27,1},{2,1,-1},{2,2,-1},{2,5,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,5,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,5,2},{4,27,1},{5,0,-2},{5,5,3},{6,1,-1},{6,2,-2},{6,5,2},{6,6,1},{6,27,1},{7,1,-1},{7,2,-2},{7,5,2},{7,7,1},{7,27,1},{8,1,-1},{8,2,-2},{8,5,2},{8,8,1},{8,27,1},{9,1,-1},{9,2,-2},{9,5,2},{9,9,1},{9,27,1},{10,1,-1},{10,2,-2},{10,5,2},{10,10,1},{10,27,1},{11,1,-1},{11,2,-2},{11,5,2},{11,11,1},{11,27,1},{12,1,-1},{12,2,-2},{12,5,2},{12,12,1},{12,27,1},{13,1,-1},{13,2,-2},{13,5,2},{13,13,1},{13,27,1},{14,1,-1},{14,2,-2},{14,5,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,5,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,5,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,5,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,5,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,5,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,5,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,5,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,5,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,5,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,5,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,5,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,5,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,5,4},{27,27,5},{0,6,1},{1,2,-2},{1,6,2},{1,27,1},{2,1,-1},{2,2,-1},{2,6,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,6,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,6,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,6,2},{5,27,1},{6,0,-2},{6,6,3},{7,1,-1},{7,2,-2},{7,6,2},{7,7,1},{7,27,1},{8,1,-1},{8,2,-2},{8,6,2},{8,8,1},{8,27,1},{9,1,-1},{9,2,-2},{9,6,2},{9,9,1},{9,27,1},{10,1,-1},{10,2,-2},{10,6,2},{10,10,1},{10,27,1},{11,1,-1},{11,2,-2},{11,6,2},{11,11,1},{11,27,1},{12,1,-1},{12,2,-2},{12,6,2},{12,12,1},{12,27,1},{13,1,-1},{13,2,-2},{13,6,2},{13,13,1},{13,27,1},{14,1,-1},{14,2,-2},{14,6,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,6,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,6,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,6,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,6,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,6,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,6,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,6,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,6,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,6,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,6,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,6,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,6,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,6,4},{27,27,5},{0,7,1},{1,2,-2},{1,7,2},{1,27,1},{2,1,-1},{2,2,-1},{2,7,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,7,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,7,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,7,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,7,2},{6,27,1},{7,0,-2},{7,7,3},{8,1,-1},{8,2,-2},{8,7,2},{8,8,1},{8,27,1},{9,1,-1},{9,2,-2},{9,7,2},{9,9,1},{9,27,1},{10,1,-1},{10,2,-2},{10,7,2},{10,10,1},{10,27,1},{11,1,-1},{11,2,-2},{11,7,2},{11,11,1},{11,27,1},{12,1,-1},{12,2,-2},{12,7,2},{12,12,1},{12,27,1},{13,1,-1},{13,2,-2},{13,7,2},{13,13,1},{13,27,1},{14,1,-1},{14,2,-2},{14,7,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,7,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,7,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,7,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,7,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,7,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,7,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,7,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,7,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,7,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,7,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,7,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,7,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,7,4},{27,27,5},{0,8,1},{1,2,-2},{1,8,2},{1,27,1},{2,1,-1},{2,2,-1},{2,8,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,8,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,8,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,8,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,8,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,8,2},{7,27,1},{8,0,-2},{8,8,3},{9,1,-1},{9,2,-2},{9,8,2},{9,9,1},{9,27,1},{10,1,-1},{10,2,-2},{10,8,2},{10,10,1},{10,27,1},{11,1,-1},{11,2,-2},{11,8,2},{11,11,1},{11,27,1},{12,1,-1},{12,2,-2},{12,8,2},{12,12,1},{12,27,1},{13,1,-1},{13,2,-2},{13,8,2},{13,13,1},{13,27,1},{14,1,-1},{14,2,-2},{14,8,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,8,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,8,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,8,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,8,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,8,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,8,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,8,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,8,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,8,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,8,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,8,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,8,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,8,4},{27,27,5},{0,9,1},{1,2,-2},{1,9,2},{1,27,1},{2,1,-1},{2,2,-1},{2,9,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,9,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,9,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,9,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,9,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,9,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,9,2},{8,27,1},{9,0,-2},{9,9,3},{10,1,-1},{10,2,-2},{10,9,2},{10,10,1},{10,27,1},{11,1,-1},{11,2,-2},{11,9,2},{11,11,1},{11,27,1},{12,1,-1},{12,2,-2},{12,9,2},{12,12,1},{12,27,1},{13,1,-1},{13,2,-2},{13,9,2},{13,13,1},{13,27,1},{14,1,-1},{14,2,-2},{14,9,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,9,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,9,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,9,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,9,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,9,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,9,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,9,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,9,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,9,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,9,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,9,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,9,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,9,4},{27,27,5},{0,10,1},{1,2,-2},{1,10,2},{1,27,1},{2,1,-1},{2,2,-1},{2,10,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,10,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,10,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,10,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,10,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,10,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,10,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,10,2},{9,27,1},{10,0,-2},{10,10,3},{11,1,-1},{11,2,-2},{11,10,2},{11,11,1},{11,27,1},{12,1,-1},{12,2,-2},{12,10,2},{12,12,1},{12,27,1},{13,1,-1},{13,2,-2},{13,10,2},{13,13,1},{13,27,1},{14,1,-1},{14,2,-2},{14,10,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,10,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,10,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,10,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,10,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,10,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,10,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,10,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,10,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,10,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,10,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,10,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,10,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,10,4},{27,27,5},{0,11,1},{1,2,-2},{1,11,2},{1,27,1},{2,1,-1},{2,2,-1},{2,11,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,11,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,11,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,11,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,11,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,11,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,11,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,11,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,11,2},{10,27,1},{11,0,-2},{11,11,3},{12,1,-1},{12,2,-2},{12,11,2},{12,12,1},{12,27,1},{13,1,-1},{13,2,-2},{13,11,2},{13,13,1},{13,27,1},{14,1,-1},{14,2,-2},{14,11,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,11,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,11,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,11,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,11,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,11,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,11,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,11,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,11,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,11,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,11,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,11,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,11,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,11,4},{27,27,5},{0,12,1},{1,2,-2},{1,12,2},{1,27,1},{2,1,-1},{2,2,-1},{2,12,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,12,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,12,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,12,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,12,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,12,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,12,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,12,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,12,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,12,2},{11,27,1},{12,0,-2},{12,12,3},{13,1,-1},{13,2,-2},{13,12,2},{13,13,1},{13,27,1},{14,1,-1},{14,2,-2},{14,12,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,12,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,12,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,12,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,12,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,12,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,12,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,12,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,12,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,12,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,12,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,12,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,12,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,12,4},{27,27,5},{0,13,1},{1,2,-2},{1,13,2},{1,27,1},{2,1,-1},{2,2,-1},{2,13,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,13,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,13,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,13,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,13,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,13,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,13,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,13,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,13,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,13,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,13,2},{12,27,1},{13,0,-2},{13,13,3},{14,1,-1},{14,2,-2},{14,13,2},{14,14,1},{14,27,1},{15,1,-1},{15,2,-2},{15,13,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,13,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,13,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,13,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,13,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,13,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,13,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,13,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,13,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,13,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,13,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,13,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,13,4},{27,27,5},{0,14,1},{1,2,-2},{1,14,2},{1,27,1},{2,1,-1},{2,2,-1},{2,14,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,14,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,14,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,14,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,14,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,14,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,14,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,14,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,14,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,14,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,14,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,14,2},{13,27,1},{14,0,-2},{14,14,3},{15,1,-1},{15,2,-2},{15,14,2},{15,15,1},{15,27,1},{16,1,-1},{16,2,-2},{16,14,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,14,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,14,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,14,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,14,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,14,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,14,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,14,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,14,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,14,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,14,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,14,4},{27,27,5},{0,15,1},{1,2,-2},{1,15,2},{1,27,1},{2,1,-1},{2,2,-1},{2,15,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,15,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,15,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,15,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,15,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,15,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,15,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,15,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,15,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,15,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,15,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,15,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,15,2},{14,27,1},{15,0,-2},{15,15,3},{16,1,-1},{16,2,-2},{16,15,2},{16,16,1},{16,27,1},{17,1,-1},{17,2,-2},{17,15,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,15,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,15,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,15,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,15,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,15,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,15,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,15,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,15,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,15,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,15,4},{27,27,5},{0,16,1},{1,2,-2},{1,16,2},{1,27,1},{2,1,-1},{2,2,-1},{2,16,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,16,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,16,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,16,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,16,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,16,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,16,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,16,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,16,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,16,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,16,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,16,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,16,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,16,2},{15,27,1},{16,0,-2},{16,16,3},{17,1,-1},{17,2,-2},{17,16,2},{17,17,1},{17,27,1},{18,1,-1},{18,2,-2},{18,16,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,16,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,16,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,16,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,16,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,16,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,16,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,16,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,16,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,16,4},{27,27,5},{0,17,1},{1,2,-2},{1,17,2},{1,27,1},{2,1,-1},{2,2,-1},{2,17,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,17,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,17,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,17,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,17,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,17,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,17,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,17,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,17,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,17,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,17,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,17,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,17,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,17,2},{15,27,1},{16,1,-1},{16,2,-2},{16,16,1},{16,17,2},{16,27,1},{17,0,-2},{17,17,3},{18,1,-1},{18,2,-2},{18,17,2},{18,18,1},{18,27,1},{19,1,-1},{19,2,-2},{19,17,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,17,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,17,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,17,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,17,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,17,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,17,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,17,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,17,4},{27,27,5},{0,18,1},{1,2,-2},{1,18,2},{1,27,1},{2,1,-1},{2,2,-1},{2,18,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,18,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,18,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,18,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,18,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,18,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,18,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,18,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,18,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,18,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,18,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,18,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,18,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,18,2},{15,27,1},{16,1,-1},{16,2,-2},{16,16,1},{16,18,2},{16,27,1},{17,1,-1},{17,2,-2},{17,17,1},{17,18,2},{17,27,1},{18,0,-2},{18,18,3},{19,1,-1},{19,2,-2},{19,18,2},{19,19,1},{19,27,1},{20,1,-1},{20,2,-2},{20,18,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,18,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,18,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,18,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,18,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,18,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,18,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,18,4},{27,27,5},{0,19,1},{1,2,-2},{1,19,2},{1,27,1},{2,1,-1},{2,2,-1},{2,19,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,19,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,19,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,19,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,19,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,19,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,19,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,19,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,19,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,19,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,19,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,19,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,19,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,19,2},{15,27,1},{16,1,-1},{16,2,-2},{16,16,1},{16,19,2},{16,27,1},{17,1,-1},{17,2,-2},{17,17,1},{17,19,2},{17,27,1},{18,1,-1},{18,2,-2},{18,18,1},{18,19,2},{18,27,1},{19,0,-2},{19,19,3},{20,1,-1},{20,2,-2},{20,19,2},{20,20,1},{20,27,1},{21,1,-1},{21,2,-2},{21,19,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,19,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,19,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,19,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,19,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,19,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,19,4},{27,27,5},{0,20,1},{1,2,-2},{1,20,2},{1,27,1},{2,1,-1},{2,2,-1},{2,20,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,20,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,20,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,20,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,20,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,20,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,20,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,20,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,20,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,20,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,20,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,20,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,20,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,20,2},{15,27,1},{16,1,-1},{16,2,-2},{16,16,1},{16,20,2},{16,27,1},{17,1,-1},{17,2,-2},{17,17,1},{17,20,2},{17,27,1},{18,1,-1},{18,2,-2},{18,18,1},{18,20,2},{18,27,1},{19,1,-1},{19,2,-2},{19,19,1},{19,20,2},{19,27,1},{20,0,-2},{20,20,3},{21,1,-1},{21,2,-2},{21,20,2},{21,21,1},{21,27,1},{22,1,-1},{22,2,-2},{22,20,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,20,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,20,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,20,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,20,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,20,4},{27,27,5},{0,21,1},{1,2,-2},{1,21,2},{1,27,1},{2,1,-1},{2,2,-1},{2,21,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,21,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,21,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,21,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,21,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,21,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,21,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,21,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,21,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,21,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,21,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,21,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,21,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,21,2},{15,27,1},{16,1,-1},{16,2,-2},{16,16,1},{16,21,2},{16,27,1},{17,1,-1},{17,2,-2},{17,17,1},{17,21,2},{17,27,1},{18,1,-1},{18,2,-2},{18,18,1},{18,21,2},{18,27,1},{19,1,-1},{19,2,-2},{19,19,1},{19,21,2},{19,27,1},{20,1,-1},{20,2,-2},{20,20,1},{20,21,2},{20,27,1},{21,0,-2},{21,21,3},{22,1,-1},{22,2,-2},{22,21,2},{22,22,1},{22,27,1},{23,1,-1},{23,2,-2},{23,21,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,21,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,21,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,21,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,21,4},{27,27,5},{0,22,1},{1,2,-2},{1,22,2},{1,27,1},{2,1,-1},{2,2,-1},{2,22,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,22,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,22,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,22,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,22,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,22,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,22,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,22,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,22,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,22,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,22,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,22,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,22,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,22,2},{15,27,1},{16,1,-1},{16,2,-2},{16,16,1},{16,22,2},{16,27,1},{17,1,-1},{17,2,-2},{17,17,1},{17,22,2},{17,27,1},{18,1,-1},{18,2,-2},{18,18,1},{18,22,2},{18,27,1},{19,1,-1},{19,2,-2},{19,19,1},{19,22,2},{19,27,1},{20,1,-1},{20,2,-2},{20,20,1},{20,22,2},{20,27,1},{21,1,-1},{21,2,-2},{21,21,1},{21,22,2},{21,27,1},{22,0,-2},{22,22,3},{23,1,-1},{23,2,-2},{23,22,2},{23,23,1},{23,27,1},{24,1,-1},{24,2,-2},{24,22,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,22,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,22,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,22,4},{27,27,5},{0,23,1},{1,2,-2},{1,23,2},{1,27,1},{2,1,-1},{2,2,-1},{2,23,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,23,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,23,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,23,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,23,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,23,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,23,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,23,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,23,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,23,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,23,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,23,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,23,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,23,2},{15,27,1},{16,1,-1},{16,2,-2},{16,16,1},{16,23,2},{16,27,1},{17,1,-1},{17,2,-2},{17,17,1},{17,23,2},{17,27,1},{18,1,-1},{18,2,-2},{18,18,1},{18,23,2},{18,27,1},{19,1,-1},{19,2,-2},{19,19,1},{19,23,2},{19,27,1},{20,1,-1},{20,2,-2},{20,20,1},{20,23,2},{20,27,1},{21,1,-1},{21,2,-2},{21,21,1},{21,23,2},{21,27,1},{22,1,-1},{22,2,-2},{22,22,1},{22,23,2},{22,27,1},{23,0,-2},{23,23,3},{24,1,-1},{24,2,-2},{24,23,2},{24,24,1},{24,27,1},{25,1,-1},{25,2,-2},{25,23,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,23,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,23,4},{27,27,5},{0,24,1},{1,2,-2},{1,24,2},{1,27,1},{2,1,-1},{2,2,-1},{2,24,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,24,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,24,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,24,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,24,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,24,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,24,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,24,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,24,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,24,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,24,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,24,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,24,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,24,2},{15,27,1},{16,1,-1},{16,2,-2},{16,16,1},{16,24,2},{16,27,1},{17,1,-1},{17,2,-2},{17,17,1},{17,24,2},{17,27,1},{18,1,-1},{18,2,-2},{18,18,1},{18,24,2},{18,27,1},{19,1,-1},{19,2,-2},{19,19,1},{19,24,2},{19,27,1},{20,1,-1},{20,2,-2},{20,20,1},{20,24,2},{20,27,1},{21,1,-1},{21,2,-2},{21,21,1},{21,24,2},{21,27,1},{22,1,-1},{22,2,-2},{22,22,1},{22,24,2},{22,27,1},{23,1,-1},{23,2,-2},{23,23,1},{23,24,2},{23,27,1},{24,0,-2},{24,24,3},{25,1,-1},{25,2,-2},{25,24,2},{25,25,1},{25,27,1},{26,1,-1},{26,2,-2},{26,24,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,24,4},{27,27,5},{0,25,1},{1,2,-2},{1,25,2},{1,27,1},{2,1,-1},{2,2,-1},{2,25,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,25,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,25,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,25,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,25,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,25,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,25,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,25,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,25,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,25,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,25,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,25,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,25,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,25,2},{15,27,1},{16,1,-1},{16,2,-2},{16,16,1},{16,25,2},{16,27,1},{17,1,-1},{17,2,-2},{17,17,1},{17,25,2},{17,27,1},{18,1,-1},{18,2,-2},{18,18,1},{18,25,2},{18,27,1},{19,1,-1},{19,2,-2},{19,19,1},{19,25,2},{19,27,1},{20,1,-1},{20,2,-2},{20,20,1},{20,25,2},{20,27,1},{21,1,-1},{21,2,-2},{21,21,1},{21,25,2},{21,27,1},{22,1,-1},{22,2,-2},{22,22,1},{22,25,2},{22,27,1},{23,1,-1},{23,2,-2},{23,23,1},{23,25,2},{23,27,1},{24,1,-1},{24,2,-2},{24,24,1},{24,25,2},{24,27,1},{25,0,-2},{25,25,3},{26,1,-1},{26,2,-2},{26,25,2},{26,26,1},{26,27,1},{27,0,4},{27,1,-4},{27,2,-8},{27,25,4},{27,27,5},{0,26,1},{1,2,-2},{1,26,2},{1,27,1},{2,1,-1},{2,2,-1},{2,26,2},{2,27,1},{3,1,-1},{3,2,-2},{3,3,1},{3,26,2},{3,27,1},{4,1,-1},{4,2,-2},{4,4,1},{4,26,2},{4,27,1},{5,1,-1},{5,2,-2},{5,5,1},{5,26,2},{5,27,1},{6,1,-1},{6,2,-2},{6,6,1},{6,26,2},{6,27,1},{7,1,-1},{7,2,-2},{7,7,1},{7,26,2},{7,27,1},{8,1,-1},{8,2,-2},{8,8,1},{8,26,2},{8,27,1},{9,1,-1},{9,2,-2},{9,9,1},{9,26,2},{9,27,1},{10,1,-1},{10,2,-2},{10,10,1},{10,26,2},{10,27,1},{11,1,-1},{11,2,-2},{11,11,1},{11,26,2},{11,27,1},{12,1,-1},{12,2,-2},{12,12,1},{12,26,2},{12,27,1},{13,1,-1},{13,2,-2},{13,13,1},{13,26,2},{13,27,1},{14,1,-1},{14,2,-2},{14,14,1},{14,26,2},{14,27,1},{15,1,-1},{15,2,-2},{15,15,1},{15,26,2},{15,27,1},{16,1,-1},{16,2,-2},{16,16,1},{16,26,2},{16,27,1},{17,1,-1},{17,2,-2},{17,17,1},{17,26,2},{17,27,1},{18,1,-1},{18,2,-2},{18,18,1},{18,26,2},{18,27,1},{19,1,-1},{19,2,-2},{19,19,1},{19,26,2},{19,27,1},{20,1,-1},{20,2,-2},{20,20,1},{20,26,2},{20,27,1},{21,1,-1},{21,2,-2},{21,21,1},{21,26,2},{21,27,1},{22,1,-1},{22,2,-2},{22,22,1},{22,26,2},{22,27,1},{23,1,-1},{23,2,-2},{23,23,1},{23,26,2},{23,27,1},{24,1,-1},{24,2,-2},{24,24,1},{24,26,2},{24,27,1},{25,1,-1},{25,2,-2},{25,25,1},{25,26,2},{25,27,1},{26,0,-2},{26,26,3},{27,0,4},{27,1,-4},{27,2,-8},{27,26,4},{27,27,5} };
	int offset[COL + 1] = { 0,106,184,314,444,574,704,834,964,1094,1224,1354,1484,1614,1744,1874,2004,2134,2264,2394,2524,2654,2784,2914,3044,3174,3304 };
	VTYPE vecQ[DIM] = { 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4 };
	// --------------------------------------------------------------
		
	// ここ以降は書き換えなくて良い.
	array<VTYPE, DIM> dp;
	dp[0] = 1;
	repi(i, 1, DIM - 1) dp[i] = 0;
	
	auto apply = [&](const array<VTYPE, DIM>& x, int col) {
		array<VTYPE, DIM> z;
		rep(i, DIM) z[i] = 0;

		repi(pt, offset[col], offset[col + 1] - 1) {
			auto [i, j, v] = matAs[pt];
			z[j] += x[i] * v;
		}

		return z;
	};

	repe(c, s) {
		dp = apply(dp, c - '0');
	}

	VTYPE res = 0;
	rep(i, DIM) res += vecQ[i] * dp[i];

	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	//【方法】
	// 愚直を書いて集めたデータをもとに遷移行列を復元する.

	//【使い方】
	// 1. mint naive(文字列) を実装する.
	// 2. embed_coefs(文字の種類数); を実行する.
	// 3. 出力を solve() 内に貼る.
	// 4. auto dp = solve<答えの型>(文字列) で勝手に DP してくれる.
	
//	embed_coefs(26, 2, INF);

	string s;
	cin >> s;

	rep(i, sz(s)) s[i] = s[i] - 'a' + '0';

	dump("naive:", naive(s)); dump("======");

	cout << solve<mint>(s) << "\n";
}
0