結果
| 問題 |
No.3228 Very Large Fibonacci Sum
|
| コンテスト | |
| ユーザー |
amentorimaru
|
| 提出日時 | 2025-08-08 23:05:06 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 7,416 bytes |
| コンパイル時間 | 4,444 ms |
| コンパイル使用メモリ | 267,672 KB |
| 実行使用メモリ | 7,716 KB |
| 最終ジャッジ日時 | 2025-08-08 23:05:12 |
| 合計ジャッジ時間 | 5,615 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 23 |
ソースコード
#define ATCODER
#include <bit>
#include <cstdint>
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <queue>
#include <cassert>
#include <unordered_map>
#include <unordered_set>
#include <math.h>
#include <climits>
#include <set>
#include <map>
#include <list>
#include <iterator>
#include <bitset>
#include <chrono>
#include <type_traits>
using namespace std;
using ll = long long;
#define FOR(i, a, b) for(ll i=(a); i<(b);i++)
#define REP(i, n) for(ll i=0; i<(n);i++)
#define ROF(i, a, b) for(ll i=(b-1); i>=(a);i--)
#define PER(i, n) for(ll i=n-1; i>=0;i--)
#define VL vector<ll>
#define VVL vector<vector<ll>>
#define VP vector< pair<ll,ll> >
#define VVP vector<vector<pair<ll,ll>>>
#define all(i) begin(i),end(i)
#define SORT(i) sort(all(i))
#define EXISTBIT(x,i) (((x>>i) & 1) != 0)
#define MP(a,b) make_pair(a,b)
#ifdef ATCODER
#include <atcoder/all>
using namespace atcoder;
using mint = modint1000000007;
using mint2 = modint998244353;
#endif
template<typename T = ll>
vector<T> read(size_t n) {
vector<T> ts(n);
for (size_t i = 0; i < n; i++) cin >> ts[i];
return ts;
}
template<typename TV, const ll N> void read_tuple_impl(TV&) {}
template<typename TV, const ll N, typename Head, typename... Tail>
void read_tuple_impl(TV& ts) {
get<N>(ts).emplace_back(*(istream_iterator<Head>(cin)));
read_tuple_impl<TV, N + 1, Tail...>(ts);
}
template<typename... Ts> decltype(auto) read_tuple(size_t n) {
tuple<vector<Ts>...> ts;
for (size_t i = 0; i < n; i++) read_tuple_impl<decltype(ts), 0, Ts...>(ts);
return ts;
}
template<typename T> T det2(array<T, 4> ar) { return ar[0] * ar[3] - ar[1] * ar[2]; }
template<typename T> T det3(array<T, 9> ar) { return ar[0] * ar[4] * ar[8] + ar[1] * ar[5] * ar[6] + ar[2] * ar[3] * ar[7] - ar[0] * ar[5] * ar[7] - ar[1] * ar[3] * ar[8] - ar[2] * ar[4] * ar[6]; }
template<typename T> bool chmax(T& tar, T src) { return tar < src ? tar = src, true : false; }
template<typename T> bool chmin(T& tar, T src) { return tar > src ? tar = src, true : false; }
template<typename T> void inc(vector<T>& ar) { for (auto& v : ar) v++; }
template<typename T> void dec(vector<T>& ar) { for (auto& v : ar) v--; }
template<typename T> vector<pair<T, int>> id_sort(vector<T>& a) {
vector<T, int> res(a.size());
for (int i = 0; i < a.size(); i++)res[i] = MP(a[i], i);
SORT(res);
return res;
}
using val = array<ll,4>; using func = pair<mint2,bool>;
ll k;
val op(val a, val b) {
return {
(a[0] * b[0] + a[1] * b[2])%k,
(a[0] * b[1] + a[1] * b[3])%k,
(a[2] * b[0] + a[3] * b[2])%k,
(a[2] * b[1] + a[3] * b[3])%k};
}
val e() {
return { 1,0,0,1 };
}
//val mp(func f, val a) {
// if (f.second) {
// return MP(a.second * f.first, a.second);
// }
// else {
// return a;
// }
//}
//func comp(func f, func g) {
// if (!f.second)return g;
// return f;
//}
//func id() { return MP(0, false); }
// Rook
ll dxr[4] = { 1,0,-1,0 };
ll dyr[4] = { 0,1,0,-1 };
// Bishop
ll dxb[4] = { -1,-1,1,1 };
ll djb[4] = { -1,1,-1,1 };
// qween
ll dxq[8] = { 0,-1,-1,-1,0,1,1,1 };
ll dyq[8] = { -1,-1,0,1,1,1,0,-1 };
template<typename T = ll>
class Matrix {
public:
Matrix(ll l, ll c = 1) {
low = l;
column = c;
var.resize(l);
for (ll i = 0; i < l; i++) {
var[i].assign(c, T(0));
}
}
T& operator()(int i, int j = 0) {
return var[i][j];
}
Matrix<T> operator+=(Matrix<T> m) {
for (ll i = 0; i < low; i++) {
for (ll j = 0; j < column; j++) {
var[i][j] += m(i, j);
}
}
return *this;
}
Matrix<T> operator -() {
for (ll i = 0; i < low; i++) {
for (ll j = 0; j < column; j++) {
var[i][j] *= T(-1);
}
}
return *this;
}
Matrix<T> operator-=(Matrix<T> m) {
*this += -m;
return *this;
}
Matrix<T> operator*=(T s) {
for (ll i = 0; i < low; i++) {
for (ll j = 0; j < column; j++) {
var[i][j] *= s;
}
}
return *this;
}
Matrix<T> operator/=(T s) {
for (ll i = 0; i < low; i++) {
for (ll j = 0; j < column; j++) {
var[i][j] /= s;
}
}
return *this;
}
Matrix<T> operator+(Matrix<T> m) {
Matrix<T> ans = *this;
return ans += m;
}
Matrix<T> operator-(Matrix<T> m) {
Matrix<T> ans = *this;
return ans -= m;
}
Matrix<T> operator*(T s) {
Matrix<T> ans = *this;
return ans *= s;
}
Matrix<T> operator/(T s) {
Matrix<T> ans = *this;
return ans /= s;
}
Matrix<T> operator*(Matrix<T> m) {
Matrix<T> ans(low, m.column);
for (ll i = 0; i < low; i++) {
for (ll j = 0; j < m.column; j++) {
for (ll k = 0; k < m.low; k++) {
ans.var[i][j] += ((var[i][k]) * (m(k, j)));
}
}
}
return ans;
}
Matrix<T> Gaussian() {
auto ans = *this;
vector<ll> f(column, -1);
for (ll j = 0; j < column; j++) {
for (ll i = 0; i < low; i++) {
if (ans.var[i][j] == 0) continue;
if (f[j] == -1) {
bool ok = true;
for (ll k = 0; k < j; k++) {
ok = ok && i != f[k];
}
if (ok) {
f[j] = i;
break;
}
}
}
if (f[j] == -1) {
continue;
}
T rev = 1 / ans(f[j], j);
for (ll i = 0; i < low; i++) {
if (ans.var[i][j] == 0)continue;
if (i == f[j])continue;
T mul = ans.var[i][j] * rev;
for (ll k = j; k < column; k++) {
ans.var[i][k] -= ans.var[f[j]][k] * mul;
}
}
}
return ans;
}
T Determinant() {
auto g = Gaussian();
T ans = 1;
for (ll i = 0; i < low; i++) {
ans *= g(i, i);
}
return ans;
}
Matrix<T> SubMatrix(ll lowS, ll lowC, ll colS, ll colC) {
Matrix<T> ans(lowC, colC);
for (ll i = 0; i < lowC; i++) {
for (ll j = 0; j < colC; j++) {
ans(i, j) = var[lowS + i][colS + j];
}
}
return ans;
}
Matrix<T> Inverse() {
Matrix<T> ex(low, column * 2);
for (ll i = 0; i < low; i++) {
ex(i, column + i) = T(1);
for (ll j = 0; j < column; j++) {
ex(i, j) = var[i][j];
}
}
auto g = ex.Gaussian();
auto s = g.SubMatrix(0, low, column, column);
for (ll i = 0; i < low; i++) {
if (g.var[i][i] == 0) {
return Matrix<T>(0, 0);
}
T inv = 1 / g.var[i][i];
for (ll j = 0; j < column; j++) {
s(i, j) *= inv;
}
}
return s;
}
vector<vector<T>> var;
ll low;
ll column;
};
template<typename T>
static Matrix<T> operator*(const T& t, const Matrix<T>& m) {
return m * t;
}
template<typename T>
T Power(T var, ll p) {
if (p == 1)
return var;
T ans = Power(var * var, p >> 1);
if (p & 1)
ans = ans * var;;
return ans;
}
void solve() {
VL a = read(5);
ll n;
cin >> n;
if (n == 0) {
cout << mint(a[0]).val();
return;
}
if (n == 1) {
cout << mint(a[0] + a[1]).val();
return;
}
Matrix<mint> m(4, 4);
m.var[0][0] = a[2];
m.var[0][1] = a[3];
m.var[0][2] = a[4];
m.var[1][0] = 1;
m.var[2][2] = 1;
m.var[3][0] = a[2];
m.var[3][1] = a[3];
m.var[3][2] = a[4];
m.var[3][3] = 1;
auto p = Power(m, n - 1);
mint ans = p.var[3][0] * a[1] + p.var[3][1] * a[0] + p.var[3][2] + p.var[3][3] * (a[1] + a[0]);
cout << ans.val();
}
int main() {
ll t = 1;
// cin >> t;
while (t--) {
solve();
}
return 0;
}
amentorimaru