結果
問題 |
No.3228 Very Large Fibonacci Sum
|
ユーザー |
![]() |
提出日時 | 2025-08-08 23:05:06 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 7,416 bytes |
コンパイル時間 | 4,444 ms |
コンパイル使用メモリ | 267,672 KB |
実行使用メモリ | 7,716 KB |
最終ジャッジ日時 | 2025-08-08 23:05:12 |
合計ジャッジ時間 | 5,615 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 |
ソースコード
#define ATCODER #include <bit> #include <cstdint> #include <iostream> #include <algorithm> #include <vector> #include <string> #include <queue> #include <cassert> #include <unordered_map> #include <unordered_set> #include <math.h> #include <climits> #include <set> #include <map> #include <list> #include <iterator> #include <bitset> #include <chrono> #include <type_traits> using namespace std; using ll = long long; #define FOR(i, a, b) for(ll i=(a); i<(b);i++) #define REP(i, n) for(ll i=0; i<(n);i++) #define ROF(i, a, b) for(ll i=(b-1); i>=(a);i--) #define PER(i, n) for(ll i=n-1; i>=0;i--) #define VL vector<ll> #define VVL vector<vector<ll>> #define VP vector< pair<ll,ll> > #define VVP vector<vector<pair<ll,ll>>> #define all(i) begin(i),end(i) #define SORT(i) sort(all(i)) #define EXISTBIT(x,i) (((x>>i) & 1) != 0) #define MP(a,b) make_pair(a,b) #ifdef ATCODER #include <atcoder/all> using namespace atcoder; using mint = modint1000000007; using mint2 = modint998244353; #endif template<typename T = ll> vector<T> read(size_t n) { vector<T> ts(n); for (size_t i = 0; i < n; i++) cin >> ts[i]; return ts; } template<typename TV, const ll N> void read_tuple_impl(TV&) {} template<typename TV, const ll N, typename Head, typename... Tail> void read_tuple_impl(TV& ts) { get<N>(ts).emplace_back(*(istream_iterator<Head>(cin))); read_tuple_impl<TV, N + 1, Tail...>(ts); } template<typename... Ts> decltype(auto) read_tuple(size_t n) { tuple<vector<Ts>...> ts; for (size_t i = 0; i < n; i++) read_tuple_impl<decltype(ts), 0, Ts...>(ts); return ts; } template<typename T> T det2(array<T, 4> ar) { return ar[0] * ar[3] - ar[1] * ar[2]; } template<typename T> T det3(array<T, 9> ar) { return ar[0] * ar[4] * ar[8] + ar[1] * ar[5] * ar[6] + ar[2] * ar[3] * ar[7] - ar[0] * ar[5] * ar[7] - ar[1] * ar[3] * ar[8] - ar[2] * ar[4] * ar[6]; } template<typename T> bool chmax(T& tar, T src) { return tar < src ? tar = src, true : false; } template<typename T> bool chmin(T& tar, T src) { return tar > src ? tar = src, true : false; } template<typename T> void inc(vector<T>& ar) { for (auto& v : ar) v++; } template<typename T> void dec(vector<T>& ar) { for (auto& v : ar) v--; } template<typename T> vector<pair<T, int>> id_sort(vector<T>& a) { vector<T, int> res(a.size()); for (int i = 0; i < a.size(); i++)res[i] = MP(a[i], i); SORT(res); return res; } using val = array<ll,4>; using func = pair<mint2,bool>; ll k; val op(val a, val b) { return { (a[0] * b[0] + a[1] * b[2])%k, (a[0] * b[1] + a[1] * b[3])%k, (a[2] * b[0] + a[3] * b[2])%k, (a[2] * b[1] + a[3] * b[3])%k}; } val e() { return { 1,0,0,1 }; } //val mp(func f, val a) { // if (f.second) { // return MP(a.second * f.first, a.second); // } // else { // return a; // } //} //func comp(func f, func g) { // if (!f.second)return g; // return f; //} //func id() { return MP(0, false); } // Rook ll dxr[4] = { 1,0,-1,0 }; ll dyr[4] = { 0,1,0,-1 }; // Bishop ll dxb[4] = { -1,-1,1,1 }; ll djb[4] = { -1,1,-1,1 }; // qween ll dxq[8] = { 0,-1,-1,-1,0,1,1,1 }; ll dyq[8] = { -1,-1,0,1,1,1,0,-1 }; template<typename T = ll> class Matrix { public: Matrix(ll l, ll c = 1) { low = l; column = c; var.resize(l); for (ll i = 0; i < l; i++) { var[i].assign(c, T(0)); } } T& operator()(int i, int j = 0) { return var[i][j]; } Matrix<T> operator+=(Matrix<T> m) { for (ll i = 0; i < low; i++) { for (ll j = 0; j < column; j++) { var[i][j] += m(i, j); } } return *this; } Matrix<T> operator -() { for (ll i = 0; i < low; i++) { for (ll j = 0; j < column; j++) { var[i][j] *= T(-1); } } return *this; } Matrix<T> operator-=(Matrix<T> m) { *this += -m; return *this; } Matrix<T> operator*=(T s) { for (ll i = 0; i < low; i++) { for (ll j = 0; j < column; j++) { var[i][j] *= s; } } return *this; } Matrix<T> operator/=(T s) { for (ll i = 0; i < low; i++) { for (ll j = 0; j < column; j++) { var[i][j] /= s; } } return *this; } Matrix<T> operator+(Matrix<T> m) { Matrix<T> ans = *this; return ans += m; } Matrix<T> operator-(Matrix<T> m) { Matrix<T> ans = *this; return ans -= m; } Matrix<T> operator*(T s) { Matrix<T> ans = *this; return ans *= s; } Matrix<T> operator/(T s) { Matrix<T> ans = *this; return ans /= s; } Matrix<T> operator*(Matrix<T> m) { Matrix<T> ans(low, m.column); for (ll i = 0; i < low; i++) { for (ll j = 0; j < m.column; j++) { for (ll k = 0; k < m.low; k++) { ans.var[i][j] += ((var[i][k]) * (m(k, j))); } } } return ans; } Matrix<T> Gaussian() { auto ans = *this; vector<ll> f(column, -1); for (ll j = 0; j < column; j++) { for (ll i = 0; i < low; i++) { if (ans.var[i][j] == 0) continue; if (f[j] == -1) { bool ok = true; for (ll k = 0; k < j; k++) { ok = ok && i != f[k]; } if (ok) { f[j] = i; break; } } } if (f[j] == -1) { continue; } T rev = 1 / ans(f[j], j); for (ll i = 0; i < low; i++) { if (ans.var[i][j] == 0)continue; if (i == f[j])continue; T mul = ans.var[i][j] * rev; for (ll k = j; k < column; k++) { ans.var[i][k] -= ans.var[f[j]][k] * mul; } } } return ans; } T Determinant() { auto g = Gaussian(); T ans = 1; for (ll i = 0; i < low; i++) { ans *= g(i, i); } return ans; } Matrix<T> SubMatrix(ll lowS, ll lowC, ll colS, ll colC) { Matrix<T> ans(lowC, colC); for (ll i = 0; i < lowC; i++) { for (ll j = 0; j < colC; j++) { ans(i, j) = var[lowS + i][colS + j]; } } return ans; } Matrix<T> Inverse() { Matrix<T> ex(low, column * 2); for (ll i = 0; i < low; i++) { ex(i, column + i) = T(1); for (ll j = 0; j < column; j++) { ex(i, j) = var[i][j]; } } auto g = ex.Gaussian(); auto s = g.SubMatrix(0, low, column, column); for (ll i = 0; i < low; i++) { if (g.var[i][i] == 0) { return Matrix<T>(0, 0); } T inv = 1 / g.var[i][i]; for (ll j = 0; j < column; j++) { s(i, j) *= inv; } } return s; } vector<vector<T>> var; ll low; ll column; }; template<typename T> static Matrix<T> operator*(const T& t, const Matrix<T>& m) { return m * t; } template<typename T> T Power(T var, ll p) { if (p == 1) return var; T ans = Power(var * var, p >> 1); if (p & 1) ans = ans * var;; return ans; } void solve() { VL a = read(5); ll n; cin >> n; if (n == 0) { cout << mint(a[0]).val(); return; } if (n == 1) { cout << mint(a[0] + a[1]).val(); return; } Matrix<mint> m(4, 4); m.var[0][0] = a[2]; m.var[0][1] = a[3]; m.var[0][2] = a[4]; m.var[1][0] = 1; m.var[2][2] = 1; m.var[3][0] = a[2]; m.var[3][1] = a[3]; m.var[3][2] = a[4]; m.var[3][3] = 1; auto p = Power(m, n - 1); mint ans = p.var[3][0] * a[1] + p.var[3][1] * a[0] + p.var[3][2] + p.var[3][3] * (a[1] + a[0]); cout << ans.val(); } int main() { ll t = 1; // cin >> t; while (t--) { solve(); } return 0; }