結果

問題 No.2302 Carry X Times
ユーザー ecottea
提出日時 2025-08-14 18:22:05
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 4 ms / 2,000 ms
コード長 35,570 bytes
コンパイル時間 6,459 ms
コンパイル使用メモリ 306,692 KB
実行使用メモリ 6,272 KB
最終ジャッジ日時 2025-08-14 18:22:13
合計ジャッジ時間 7,889 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline int getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

using mint = modint998244353;
//using mint = static_modint<(int)1e9+7>;
//using mint = modint; // mint::set_mod(m);

using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
int mute_dump = 0;
int frac_print = 0;
#if __has_include(<atcoder/all>)
namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
#endif
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


//【有限体 F_p 上の計算(64 bit)】
/*
* 有限体 F_p 上ので様々な計算を行う.
* mll::set_mod(ll p) はあらゆる場所で使う法を書き換えてしまうので注意.
*
* 制約 : p は素数
*/
struct mll {
	// verify : https://judge.yosupo.jp/problem/factorize

	__int128 v;
	inline static __int128 MOD;

	// コンストラクタ
	mll() noexcept : v(0) {}
	mll(const mll& a) = default;
	mll(int a) noexcept : v(a% MOD) { if (v < 0) v += MOD; }
	mll(long int a) noexcept : v(a% MOD) { if (v < 0) v += MOD; }
	mll(ll a) noexcept : v(a% MOD) { if (v < 0) v += MOD; }

	// 代入
	mll& operator=(const mll& a) = default;
	mll& operator=(int a) { v = a % MOD; if (v < 0) v += MOD; return *this; }
	mll& operator=(ll a) { v = a % MOD; if (v < 0) v += MOD; return *this; }

	// 入出力
	friend istream& operator>>(istream& is, mll& x) {
		ll tmp; is >> tmp; x.v = tmp % MOD; if (x.v < 0) x.v += MOD; return is;
	}
	friend ostream& operator<<(ostream& os, const mll& x) { os << (ll)x.v; return os; }

	// 比較(参考 : https://twitter.com/KakurenboUni/status/1717463221190414472)
	friend bool operator==(const mll& a, const mll& b) { return a.v == b.v; }
	friend bool operator!=(const mll& a, const mll& b) { return a.v != b.v; }

	// 単項演算
	mll operator-() const { mll a; if (v > 0) a.v = MOD - v; return a; }
	mll& operator++() { v++; if (v == MOD) v = 0; return *this; }
	mll operator++(int) { mll tmp = *this; ++(*this); return tmp; }
	mll& operator--() { v--; if (v == -1) v = MOD - 1; return *this; }
	mll operator--(int) { mll tmp = *this; --(*this); return tmp; }

	// 二項演算
	mll& operator+=(const mll& b) { v += b.v; if (v >= MOD) v -= MOD; return *this; }
	mll& operator-=(const mll& b) { v -= b.v; if (v < 0) v += MOD; return *this; }
	mll& operator*=(const mll& b) { v = (v * b.v) % MOD; return *this; }
	mll& operator/=(const mll& b) { *this *= b.inv(); return *this; }
	friend mll operator+(mll a, const mll& b) { a += b; return a; }
	friend mll operator-(mll a, const mll& b) { a -= b; return a; }
	friend mll operator*(mll a, const mll& b) { a *= b; return a; }
	friend mll operator/(mll a, const mll& b) { a /= b; return a; }

	// 累乗
	mll pow(ll d) const {
		mll res(1), pow2 = *this;
		while (d > 0) {
			if (d & 1) res *= pow2;
			pow2 *= pow2;
			d >>= 1;
		}
		return res;
	}

	// 逆元
	mll inv() const { Assert(v != 0); return pow((ll)(MOD - 2)); }

	// 法の設定,確認
	static void set_mod(ll MOD_) { Assert(MOD_ > 0); MOD = MOD_; }
	static ll mod() { return (ll)MOD; }

	// 値の確認
	ll val() const { return (ll)v; }
};


//【数字和】O(log n)
/*
* 非負整数 n を B 進表記したときの桁の数字の和を返す.
*
* 制約:B ≧ 2
*/
ll digit_sum(ll n, ll B = 10) {
	// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ed

	Assert(B >= 2);

	ll sum = 0;
	while (n > 0) {
		sum += n % B;
		n /= B;
	}
	return sum;
}


// 愚直
ll BASE;
vector<mll> memo;
mll naive(const string& s) {
	int n = (s == "" ? 0 : stoi(s));

	mll res = 0;
	repir(i, n, 0) {
		if (memo[i] != -1) {
			res += memo[i];
			break;
		}

		{
			int a = i;
			repi(b, 0, i - 1) {
				int c = (-digit_sum(a + b) + digit_sum(a) + digit_sum(b)) / 9;
				res += mll(BASE).pow(c);
			}
		}

		{
			int b = i;
			repi(a, 0, i) {
				int c = (-digit_sum(a + b) + digit_sum(a) + digit_sum(b)) / 9;
				res += mll(BASE).pow(c);
			}
		}
	}

	return memo[n] = res;
}


//【行列】
/*
* Matrix<T>(int n, int m) : O(n m)
*	n×m 零行列で初期化する.
*
* Matrix<T>(int n) : O(n^2)
*	n×n 単位行列で初期化する.
*
* Matrix<T>(vvT a) : O(n m)
*	二次元配列 a[0..n)[0..m) の要素で初期化する.
*
* bool empty() : O(1)
*	行列が空かを返す.
*
* A + B : O(n m)
*	n×m 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n m)
*	n×m 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n m)
*	n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n m)
*	n×m 行列 A と n 次元列ベクトル x の積を返す.
*
* x * A : O(n m)(やや遅い)
*	m 次元行ベクトル x と n×m 行列 A の積を返す.
*
* A * B : O(n m l)
*	n×m 行列 A と m×l 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
*	自身を d 乗した行列を返す.
*/
template <class T>
struct Matrix {
	int n, m; // 行列のサイズ(n 行 m 列)
	vector<vector<T>> v; // 行列の成分

	// n×m 零行列で初期化する.
	Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}

	// n×n 単位行列で初期化する.
	Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }

	// 二次元配列 a[0..n)[0..m) の要素で初期化する.
	Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
	Matrix() : n(0), m(0) {}

	// 代入
	Matrix(const Matrix&) = default;
	Matrix& operator=(const Matrix&) = default;

	// アクセス
	inline vector<T> const& operator[](int i) const { return v[i]; }
	inline vector<T>& operator[](int i) {
		// verify : https://judge.yosupo.jp/problem/matrix_product

		// inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった.
		return v[i];
	}

	// 入力
	friend istream& operator>>(istream& is, Matrix& a) {
		rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
		return is;
	}

	// 行の追加
	void push_back(const vector<T>& a) {
		Assert(sz(a) == m);
		v.push_back(a);
		n++;
	}

	// 行の削除
	void pop_back() {
		Assert(n > 0);
		v.pop_back();
		n--;
	}

	// サイズ変更
	void resize(int n_) {
		v.resize(n_);
		n = n_;
	}

	void resize(int n_, int m_) {
		n = n_;
		m = m_;

		v.resize(n);
		rep(i, n) v[i].resize(m);
	}

	// 空か
	bool empty() const { return min(n, m) == 0; }

	// 比較
	bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
	bool operator!=(const Matrix& b) const { return !(*this == b); }

	// 加算,減算,スカラー倍
	Matrix& operator+=(const Matrix& b) {
		rep(i, n) rep(j, m) v[i][j] += b[i][j];
		return *this;
	}
	Matrix& operator-=(const Matrix& b) {
		rep(i, n) rep(j, m) v[i][j] -= b[i][j];
		return *this;
	}
	Matrix& operator*=(const T& c) {
		rep(i, n) rep(j, m) v[i][j] *= c;
		return *this;
	}
	Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
	Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
	Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
	friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
	Matrix operator-() const { return Matrix(*this) *= T(-1); }

	// 行列ベクトル積 : O(m n)
	vector<T> operator*(const vector<T>& x) const {
		vector<T> y(n);
		rep(i, n) rep(j, m)	y[i] += v[i][j] * x[j];
		return y;
	}

	// ベクトル行列積 : O(m n)
	friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
		vector<T> y(a.m);
		rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
		return y;
	}

	// 積:O(n^3)
	Matrix operator*(const Matrix& b) const {
		// verify : https://judge.yosupo.jp/problem/matrix_product

		Matrix res(n, b.m);
		rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j];
		return res;
	}
	Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }

	// 累乗:O(n^3 log d)
	Matrix pow(ll d) const {
		// verify : https://judge.yosupo.jp/problem/pow_of_matrix

		Matrix res(n), pow2 = *this;
		while (d > 0) {
			if (d & 1) res *= pow2;
			pow2 *= pow2;
			d >>= 1;
		}
		return res;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Matrix& a) {
		rep(i, a.n) {
			os << "[";
			rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
			if (i < a.n - 1) os << "\n";
		}
		return os;
	}
#endif
};


//【行簡約形(行交換なし)】O(n m min(n, m))
/*
* 行基本変形(行交換なし)で n×m 行列 A を行簡約形に変形し,ピボット位置のリストを返す.
*/
template <class T>
vector<pii> row_reduced_form(Matrix<T>& A) {
	int n = A.n, m = A.m;
	
	vector<pii> piv;
	piv.reserve(min(n, m));

	// 未確定の列を記録しておくリスト
	list<int> rjs;
	rep(j, m) rjs.push_back(j);

	rep(i, n) {
		// 第 i 行の係数を左から走査し非 0 を見つける.
		auto it = rjs.begin();
		for (; it != rjs.end(); it++) if (A[i][*it] != 0) break;

		// 第 i 行の全てが 0 なら無視する.
		if (it == rjs.end()) continue;

		// A[i][j] をピボットに選択する.
		int j = *it;
		rjs.erase(it);
		piv.emplace_back(i, j);

		// A[i][j] が 1 になるよう行全体を A[i][j] で割る.
		T Aij_inv = T(1) / A[i][j];
		repi(j2, j, m - 1) A[i][j2] *= Aij_inv;

		// 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる.
		rep(i2, n) if (A[i2][j] != 0 && i2 != i) {
			T mul = A[i2][j];
			repi(j2, j, m - 1) A[i2][j2] -= A[i][j2] * mul;
		}
	}

	return piv;
}


//【逆行列】O(n^3)
/*
* n 次正方行列 mat の逆行列を返す(存在しなければ空)
*/
template <class T>
Matrix<T> inverse_matrix(const Matrix<T>& mat) {
	// verify : https://judge.yosupo.jp/problem/inverse_matrix

	int n = mat.n;

	// 元の行列 mat と単位行列を繋げた拡大行列 v を作る.
	vector<vector<T>> v(n, vector<T>(2 * n));
	rep(i, n) rep(j, n) {
		v[i][j] = mat[i][j];
		if (i == j) v[i][n + j] = 1;
	}
	int m = 2 * n;

	// 注目位置を (i, j)(i 行目かつ j 列目)とする.
	int i = 0, j = 0;

	// 拡大行列に対して行基本変形を行い,左側を単位行列にすることを目指す.
	while (i < n && j < m) {
		// 同じ列の下方の行から非 0 成分を見つける.
		int i2 = i;
		while (i2 < n && v[i2][j] == T(0)) i2++;

		// 見つからなかったら全て 0 の列があったので mat は非正則
		if (i2 == n) return Matrix<T>();

		// 見つかったら i 行目とその行を入れ替える.
		if (i != i2) swap(v[i], v[i2]);

		// v[i][j] が 1 になるよう行全体を v[i][j] で割る.
		T vij_inv = T(1) / v[i][j];
		repi(j2, j, m - 1) v[i][j2] *= vij_inv;

		// v[i][j] と同じ列の成分が全て 0 になるよう i 行目を定数倍して減じる.
		rep(i2, n) {
			// i 行目だけは引かない.
			if (i2 == i) continue;

			T mul = v[i2][j];
			repi(j2, j, m - 1) v[i2][j2] -= v[i][j2] * mul;
		}

		// 注目位置を右下に移す.
		i++; j++;
	}

	// 拡大行列の右半分が mat の逆行列なのでコピーする.
	Matrix<T> mat_inv(n, n);
	rep(i, n) rep(j, n) mat_inv[i][j] = v[i][n + j];

	return mat_inv;
}


//【形式的冪級数】
/*
* MFPS() : O(1)
*	零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
*	定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
*	n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
*	f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
*	畳込み用の関数を CONV に設定する.
*
* c + f, f + c : O(1)	f + g : O(n)
* f - c : O(1)			c - f, f - g, -f : O(n)
* c * f, f * c : O(n)	f * g : O(n log n)		f * g_sp : O(n |g|)
* f / c : O(n)			f / g : O(n log n)		f / g_sp : O(n |g|)
*	形式的冪級数としての和,差,積,商の結果を返す.
*	g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
*	制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
*	1 / f mod z^d を返す.
*	制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
*	多項式としての f を g で割った商,余り,商と余りの組を返す.
*	制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
*	多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d, mint c = 1) : O(d)
*	単項式 c z^d を返す.
*
* mint f.assign(mint c) : O(n)
*	多項式 f の不定元 z に c を代入した値を返す.
*
* f.resize(int d) : O(1)
*	mod z^d をとる.
*
* f.resize() : O(n)
*	不要な高次の項を削る.
*
* f >> d, f << d : O(n)
*	係数列を d だけ右[左]シフトした多項式を返す.
*  (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)
*
* f.push_back(c) : O(1)
*	最高次の係数として c を追加する.
*/
struct MFPS {
	using SMFPS = vector<pim>;

	int n; // 係数の個数(次数 + 1)
	vm c; // 係数列
	inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数

	// コンストラクタ(0,定数,係数列で初期化)
	MFPS() : n(0) {}
	MFPS(mint c0) : n(1), c({ c0 }) {}
	MFPS(int c0) : n(1), c({ mint(c0) }) {}
	MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
	MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }

	// 代入
	MFPS(const MFPS& f) = default;
	MFPS& operator=(const MFPS& f) = default;
	MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }

	void push_back(mint cn) { c.emplace_back(cn); ++n; }
	void pop_back() { c.pop_back(); --n; }
	[[nodiscard]] mint back() { return c.back(); }

	// 比較
	[[nodiscard]] bool operator==(const MFPS& g) const { return c == g.c; }
	[[nodiscard]] bool operator!=(const MFPS& g) const { return c != g.c; }

	// アクセス
	inline mint const& operator[](int i) const { return c[i]; }
	inline mint& operator[](int i) { return c[i]; }

	// 次数
	[[nodiscard]] int deg() const { return n - 1; }
	[[nodiscard]] int size() const { return n; }

	static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
		// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci

		CONV = CONV_;
	}

	// 加算
	MFPS& operator+=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
		else {
			rep(i, n) c[i] += g.c[i];
			repi(i, n, g.n - 1)	c.push_back(g.c[i]);
			n = g.n;
		}
		return *this;
	}
	[[nodiscard]] MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }

	// 定数加算
	MFPS& operator+=(const mint& sc) {
		if (n == 0) { n = 1; c = { sc }; }
		else { c[0] += sc; }
		return *this;
	}
	[[nodiscard]] MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
	[[nodiscard]] friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
	MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
	[[nodiscard]] MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
	[[nodiscard]] friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }

	// 減算
	MFPS& operator-=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
		else {
			rep(i, n) c[i] -= g.c[i];
			repi(i, n, g.n - 1) c.push_back(-g.c[i]);
			n = g.n;
		}
		return *this;
	}
	[[nodiscard]] MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }

	// 定数減算
	MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
	[[nodiscard]] MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
	[[nodiscard]] friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
	MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
	[[nodiscard]] MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
	[[nodiscard]] friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }

	// 加法逆元
	[[nodiscard]] MFPS operator-() const { return MFPS(*this) *= -1; }

	// 定数倍
	MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
	[[nodiscard]] MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
	[[nodiscard]] friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
	MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
	[[nodiscard]] MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
	[[nodiscard]] friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }

	// 右からの定数除算
	MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
	[[nodiscard]] MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
	MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
	[[nodiscard]] MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }

	// 積
	MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
	[[nodiscard]] MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }

	// 除算
	[[nodiscard]] MFPS inv(int d) const {
		// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series

		//【方法】
		// 1 / f mod z^d を求めることは,
		//		f g = 1 (mod z^d)
		// なる g を求めることである.
		// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.
		//
		// d = 1 のときについては
		//		g = 1 / f[0] (mod z^1)
		// である.
		//
		// 次に,
		//		g = h (mod z^k)
		// が求まっているとして
		//		g mod z^(2 k)
		// を求める.最初の式を変形していくことで
		//		g - h = 0 (mod z^k)
		//		⇒ (g - h)^2 = 0 (mod z^(2 k))
		//		⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k))
		//		⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k))
		//		⇔ g - 2 h + f h^2 = 0 (mod z^(2 k))  (f g = 1 (mod z^d) より)
		//		⇔ g = (2 - f h) h (mod z^(2 k))
		// を得る.
		//
		// この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.

		Assert(!c.empty());
		Assert(c[0] != 0);

		MFPS g(c[0].inv());
		for (int k = 1; k < d; k <<= 1) {
			int len = max(min(2 * k, d), 1);
			MFPS tmp(0, len);
			rep(i, min(len, n)) tmp[i] = -c[i];	// -f
			tmp *= g;							// -f h
			tmp.resize(len);
			tmp[0] += 2;						// 2 - f h
			g *= tmp;							// (2 - f h) h
			g.resize(len);
		}

		return g;
	}
	MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
	[[nodiscard]] MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }

	// 余り付き除算
	[[nodiscard]] MFPS quotient(const MFPS& g) const {
		// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		//【方法】
		// f(x) = g(x) q(x) + r(x) となる q(x) を求める.
		// f の次数は n-1, g の次数は m-1 とする.(n ≧ m)
		// 従って q の次数は n-m,r の次数は m-2 となる.
		// 
		// f^R で f の係数列を逆順にした多項式を表す.すなわち
		//		f^R(x) := f(1/x) x^(n-1)
		// である.他の多項式も同様とする.
		//
		// 最初の式で x → 1/x と置き換えると,
		//		f(1/x) = g(1/x) q(1/x) + r(1/x)
		//		⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
		//		⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
		//		⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
		//		⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
		// 	    ⇒ q^R(x) = f^R(x) / g^R(x)  (mod x^(n-m+1))
		// を得る.
		// 	   
		// これで q を mod x^(n-m+1) で正しく求めることができることになるが,
		// q の次数は n-m であったから,q 自身を正しく求めることができた.

		if (n < g.n) return MFPS();
		return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
	}
	[[nodiscard]] MFPS reminder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		return (*this - this->quotient(g) * g).resize();
	}
	[[nodiscard]] pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		pair<MFPS, MFPS> res;
		res.first = this->quotient(g);
		res.second = (*this - res.first * g).resize();
		return res;
	}

	// スパース積
	MFPS& operator*=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		mint g0 = 0;
		if (it0->first == 0) {
			g0 = it0->second;
			it0++;
		}

		// 後ろからインライン配る DP
		repir(i, n - 1, 0) {
			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				auto [j, gj] = *it;

				if (i + j >= n) break;

				c[i + j] += c[i] * gj;
			}

			// 定数項は最後に配るか消去しないといけない.
			c[i] *= g0;
		}

		return *this;
	}
	[[nodiscard]] MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }

	// スパース商
	MFPS& operator/=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		Assert(it0->first == 0 && it0->second != 0);
		mint g0_inv = it0->second.inv();
		it0++;

		// 前からインライン配る DP(後ろに累積効果あり)
		rep(i, n) {

			// 定数項は最初に配らないといけない.
			c[i] *= g0_inv;

			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				auto [j, gj] = *it;

				if (i + j >= n) break;

				c[i + j] -= c[i] * gj;
			}
		}

		return *this;
	}
	[[nodiscard]] MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }

	// 係数反転
	[[nodiscard]] MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }

	// 単項式
	[[nodiscard]] static MFPS monomial(int d, mint coef = 1) {
		MFPS mono(0, d + 1);
		mono[d] = coef;
		return mono;
	}

	// 不要な高次項の除去
	MFPS& resize() {
		// 最高次の係数が非 0 になるまで削る.
		while (n > 0 && c[n - 1] == 0) {
			c.pop_back();
			n--;
		}
		return *this;
	}

	// x^d 以上の項を除去する.
	MFPS& resize(int d) {
		n = d;
		c.resize(d);
		return *this;
	}

	// 不定元への代入
	[[nodiscard]] mint assign(const mint& x) const {
		mint val = 0;
		repir(i, n - 1, 0) val = val * x + c[i];
		return val;
	}

	// 係数のシフト
	MFPS& operator>>=(int d) {
		n += d;
		c.insert(c.begin(), d, 0);
		return *this;
	}
	MFPS& operator<<=(int d) {
		n -= d;
		if (n <= 0) { c.clear(); n = 0; }
		else c.erase(c.begin(), c.begin() + d);
		return *this;
	}
	[[nodiscard]] MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
	[[nodiscard]] MFPS operator<<(int d) const { return MFPS(*this) <<= d; }

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const MFPS& f) {
		if (f.n == 0) os << 0;
		else {
			rep(i, f.n) {
				os << f[i] << "z^" << i;
				if (i < f.n - 1) os << " + ";
			}
		}
		return os;
	}
#endif
};


//【畳込み(素朴)】O(n m)
/*
* a[0..n) と b[0..m) を畳み込んだ数列 c[0..n+m-1) を返す.
* すなわち c[k] = Σ_(i+j=k) a[i] b[j] である.
*/
template <class T>
vector<T> naive_convolution(const vector<T>& a, const vector<T>& b) {
	// verify : https://atcoder.jp/contests/abc214/tasks/abc214_g

	int n = sz(a), m = sz(b);
	if (n == 0 || m == 0) return vector<T>();

	// c[k] = Σ_(i+j=k) a[i] b[j]
	vector<T> c(n + m - 1);
	if (n < m) {
		rep(i, n) rep(j, m) c[i + j] += a[i] * b[j];
	}
	else {
		rep(j, m) rep(i, n) c[i + j] += a[i] * b[j];
	}

	return c;
}


// 遷移行列の係数を計算し,埋め込み用のコードを出力する.
// 待てない場合は len_max とか LB_max とかを指定する.
void embed_coefs(int COL, int len_max = INF, int LB_max = INF) {
	vector<string> ss{""};
	int idx = 0;

	vector<pii> piv_prv;

	repi(len, 0, INF) {
		dump("----------- len:", len, "--------------");

		int L = sz(ss); int LB = min(L, LB_max);
		dump("L:", L);
		
		// (i,j) 成分が naive(ss[i] + ss[j]) であるような行列 mat を得る.
		Matrix<mll> mat(L, LB);
		rep(i, L) rep(j, LB) mat[i][j] = naive(ss[i] + ss[j]);
		//dump("mat:"); dump(mat);

		// mat に対して行基本変形を行いピボット位置のリスト piv を得る.
		auto piv = row_reduced_form(mat);
		dump("piv(", sz(piv), "):"); dump(piv);

		// rank の更新がなかったら必要な情報は揃ったとみなして打ち切る.
		if (len == len_max || (sz(piv) > 0 && sz(piv) == sz(piv_prv))) { // たまに失敗する.
			int DIM = sz(piv);
			
			// 選択した行と列をそれぞれ昇順に並べて is, js とする(0 始まりのはず)
			vi is(DIM), js(DIM);
			rep(r, DIM) tie(is[r], js[r]) = piv[r];
			sort(all(js));

			// 基底の変換行列 P を得る.
			Matrix<mll> P(DIM, DIM);
			rep(i, DIM) rep(j, DIM) P[i][j] = naive(ss[is[i]] + ss[js[j]]);

			// P の逆行列 P_inv を得る.
			auto P_inv = inverse_matrix(P);

			// 各文字に対応する表現行列を得る.
			vector<Matrix<mll>> matAs(COL, Matrix<mll>(DIM, DIM));
			rep(k, COL) {
				char c = '0' + k;
				rep(i, DIM) rep(j, DIM) matAs[k][i][j] = naive(ss[is[i]] + c + ss[js[j]]);
				matAs[k] = matAs[k] * P_inv;
			}
						
			// 埋め込み用の文字列を出力する.
			auto to_signed_string = [](mll x) {
				ll v = x.val();
				ll mod = mll::mod();
				if (2 * v > mod) v -= mod;
				return to_string(v);
			};
			string eb = "constexpr int DIM = ";
			eb += to_string(DIM);
			eb += ";\n";
			eb += "constexpr int COL = ";
			eb += to_string(COL);
			eb += ";\n";
			eb += "ll matAs[COL][DIM][DIM] = {\n";
			rep(k, COL) {
				eb += "{";
				rep(i, DIM) {
					eb += "{";
					rep(j, DIM) eb += to_signed_string(matAs[k][i][j]) + ",";
					eb.pop_back();
					eb += "},";
				}
				eb.pop_back();
				eb += "},\n";
			}
			eb.pop_back();
			eb.pop_back();
			eb += "};\n";
			eb += "ll vecQ[DIM] = {";
			rep(i, DIM) eb += to_signed_string(P[i][0]) + ",";
			eb.pop_back();
			eb += "};\n";
			cout << eb;

			exit(0);
		}

		// 基底ガチャ
		mt19937_64 mt((int)time(NULL)); shuffle(ss.begin() + idx, ss.end(), mt);
		
		// 次に長い文字列たちを ss に追加する.
		int nidx = sz(ss);
		repi(i, idx, nidx - 1) rep(k, COL) {
			ss.push_back(ss[i]);
			ss.back().push_back('0' + k);
		}
		idx = nidx;

		piv_prv = move(piv);
	}
}


int D;
MFPS solve(const string& s) {
	// --------------- embed_coefs() からの出力を貼る ----------------
	constexpr int DIM = 5;
	constexpr int COL = 10;
	ll matAs[COL][DIM][DIM] = {
	{{1,0,0,0,0},{33999976,-59999960,24999985,-4,5},{137999941,-239999910,99999970,-18,20},{-999134000225,-1484999700,614999925,999880,125},{102001061999745,-180001799999685,75000734999940,-12000171,15000175}},
	{{0,1,0,0,0},{34999980,-60999969,24999990,-5,6},{139999950,-241999929,99999980,-20,22},{864999800,-1001478999750,609999950,-125,1000130},{105001069999765,-183001812999725,75000739999960,-15000175,18000179}},
	{{0,0,1,0,0},{36999984,-63999978,25999995,-6,7},{143999958,-247999946,101999989,-22,24},{2000868999820,-4001482999790,1000609999970,-1000130,2000135},{111001079999781,-192001829999757,78000746999976,-18000179,21000183}},
	{{1,-3,3,0,0},{39999988,-68999987,28000000,-7,8},{149999965,-257999961,105999997,-24,26},{5000877999835,-9001496999820,3000614999985,-2000135,3000140},{120001091999793,-207001850999781,84000755999988,-21000183,24000187}},
	{{3,-8,6,0,0},{43999992,-75999996,31000005,-8,9},{157999971,-271999974,112000004,-26,28},{9000891999845,-16001520999840,6000624999995,-3000140,4000145},{132001105999801,-228001875999797,93000766999996,-24000187,27000191}},
	{{0,0,0,1,0},{48999990,-84999990,35000000,-8,10},{167999970,-289999970,120000000,-27,30},{14000904999850,-25001539999850,10000630000000,-3000145,5000150},{147001115999805,-255001889999805,105000770000000,-26000191,30000195}},
	{{0,0,0,0,1},{54999990,-95999990,40000000,-10,12},{179999970,-311999970,130000000,-30,33},{20000924999850,-36001574999850,15000645000000,-5000150,7000155},{165001129999805,-288001913999805,120000780000000,-30000195,34000199}},
	{{1999999,-3999998,1999999,-1,2},{63999988,-112999986,47999998,-12,14},{195999967,-341999964,143999997,-33,36},{29000947999845,-53001615999840,23000662999995,-7000155,9000160},{188001143999801,-331001937999797,140000789999996,-34000199,38000203}},
	{{5999997,-11999994,5999997,-2,3},{75999984,-135999978,58999994,-14,16},{215999961,-379999952,161999991,-36,39},{41000973999835,-76001662999820,34000683999985,-9000160,11000165},{216001157999793,-384001961999781,165000799999988,-38000203,42000207}},
	{{11999994,-23999988,11999994,-3,4},{90999978,-164999966,72999988,-16,18},{239999952,-425999934,183999982,-39,42},{56001002999820,-105001715999790,48000707999970,-11000165,13000170},{249001171999781,-447001985999757,195000809999976,-42000207,46000211}} };
	ll vecQ[DIM] = { 1,4,9,1000035,6000043 };
	// --------------------------------------------------------------
	
	// 多項式に整形
	auto to_poly = [&](ll val) {
		MFPS poly;
		while (val != 0) {
			ll r = smod(val, BASE);
			if (2 * r > BASE) r -= BASE;
			poly.push_back(mint(r));
			val = (val - r) / BASE;
		}
		return poly;
	};
	MFPS matAsP[COL][DIM][DIM];
	MFPS vecQP[DIM];
	rep(c, COL) rep(i, DIM) rep(j, DIM) matAsP[c][i][j] = to_poly(matAs[c][i][j]);
	rep(j, DIM) vecQP[j] = to_poly(vecQ[j]);

	// mod (z^D - 1)
	auto get_mod = [&](MFPS& f) {
		repi(d, D, sz(f) - 1) f[d % D] += f[d];
		f.resize(D);
	};

	// 状態 DP
	array<MFPS, DIM> dp;
	dp[0] = MFPS(1);

	auto apply = [&](const array<MFPS, DIM>& x, int col) {
		array<MFPS, DIM> z;
		rep(j, DIM) {
			rep(i, DIM) z[j] += x[i] * matAsP[col][i][j];
		}

		return z;
	};

	repe(c, s) {
		dp = apply(dp, c - '0');
		//rep(i, DIM) get_mod(dp[i]);
	}

	MFPS res;
	rep(i, DIM) res += dp[i] * vecQP[i];
	//get_mod(res);

	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	//【方法】
	// 愚直を書いて集めたデータをもとに遷移行列を復元する.

	//【使い方】
	// 1. mint naive(文字列) を実装する.
	// 2. embed_coefs(文字の種類数); を実行する.
	// 3. 出力を solve() 内に貼る.
	// 4. auto dp = solve<答えの型>(文字列) で勝手に DP してくれる.
	
//	mll::set_mod(1000000000000000003LL);
//	memo = vector<mll>((int)1e7 + 1, -1);

//	MFPS::set_conv(naive_convolution);

	BASE = 1000000;
//	embed_coefs(10, 1, INF);

	int T;
	cin >> T;

	rep(hoge, T) {
		dump("------------------------------------------------------");

		string s; int x;
		cin >> s >> x;

//		dump("naive:", naive(s)); dump("=====");

		auto f = solve(s);
		dump(f);

		f.resize(x + 1);
		cout << f[x] << "\n";
	}
}
0