結果
問題 |
No.2302 Carry X Times
|
ユーザー |
|
提出日時 | 2025-08-14 18:22:05 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 35,570 bytes |
コンパイル時間 | 6,459 ms |
コンパイル使用メモリ | 306,692 KB |
実行使用メモリ | 6,272 KB |
最終ジャッジ日時 | 2025-08-14 18:22:13 |
合計ジャッジ時間 | 7,889 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 24 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline int getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include(<atcoder/all>) namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【有限体 F_p 上の計算(64 bit)】 /* * 有限体 F_p 上ので様々な計算を行う. * mll::set_mod(ll p) はあらゆる場所で使う法を書き換えてしまうので注意. * * 制約 : p は素数 */ struct mll { // verify : https://judge.yosupo.jp/problem/factorize __int128 v; inline static __int128 MOD; // コンストラクタ mll() noexcept : v(0) {} mll(const mll& a) = default; mll(int a) noexcept : v(a% MOD) { if (v < 0) v += MOD; } mll(long int a) noexcept : v(a% MOD) { if (v < 0) v += MOD; } mll(ll a) noexcept : v(a% MOD) { if (v < 0) v += MOD; } // 代入 mll& operator=(const mll& a) = default; mll& operator=(int a) { v = a % MOD; if (v < 0) v += MOD; return *this; } mll& operator=(ll a) { v = a % MOD; if (v < 0) v += MOD; return *this; } // 入出力 friend istream& operator>>(istream& is, mll& x) { ll tmp; is >> tmp; x.v = tmp % MOD; if (x.v < 0) x.v += MOD; return is; } friend ostream& operator<<(ostream& os, const mll& x) { os << (ll)x.v; return os; } // 比較(参考 : https://twitter.com/KakurenboUni/status/1717463221190414472) friend bool operator==(const mll& a, const mll& b) { return a.v == b.v; } friend bool operator!=(const mll& a, const mll& b) { return a.v != b.v; } // 単項演算 mll operator-() const { mll a; if (v > 0) a.v = MOD - v; return a; } mll& operator++() { v++; if (v == MOD) v = 0; return *this; } mll operator++(int) { mll tmp = *this; ++(*this); return tmp; } mll& operator--() { v--; if (v == -1) v = MOD - 1; return *this; } mll operator--(int) { mll tmp = *this; --(*this); return tmp; } // 二項演算 mll& operator+=(const mll& b) { v += b.v; if (v >= MOD) v -= MOD; return *this; } mll& operator-=(const mll& b) { v -= b.v; if (v < 0) v += MOD; return *this; } mll& operator*=(const mll& b) { v = (v * b.v) % MOD; return *this; } mll& operator/=(const mll& b) { *this *= b.inv(); return *this; } friend mll operator+(mll a, const mll& b) { a += b; return a; } friend mll operator-(mll a, const mll& b) { a -= b; return a; } friend mll operator*(mll a, const mll& b) { a *= b; return a; } friend mll operator/(mll a, const mll& b) { a /= b; return a; } // 累乗 mll pow(ll d) const { mll res(1), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } // 逆元 mll inv() const { Assert(v != 0); return pow((ll)(MOD - 2)); } // 法の設定,確認 static void set_mod(ll MOD_) { Assert(MOD_ > 0); MOD = MOD_; } static ll mod() { return (ll)MOD; } // 値の確認 ll val() const { return (ll)v; } }; //【数字和】O(log n) /* * 非負整数 n を B 進表記したときの桁の数字の和を返す. * * 制約:B ≧ 2 */ ll digit_sum(ll n, ll B = 10) { // verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ed Assert(B >= 2); ll sum = 0; while (n > 0) { sum += n % B; n /= B; } return sum; } // 愚直 ll BASE; vector<mll> memo; mll naive(const string& s) { int n = (s == "" ? 0 : stoi(s)); mll res = 0; repir(i, n, 0) { if (memo[i] != -1) { res += memo[i]; break; } { int a = i; repi(b, 0, i - 1) { int c = (-digit_sum(a + b) + digit_sum(a) + digit_sum(b)) / 9; res += mll(BASE).pow(c); } } { int b = i; repi(a, 0, i) { int c = (-digit_sum(a + b) + digit_sum(a) + digit_sum(b)) / 9; res += mll(BASE).pow(c); } } } return memo[n] = res; } //【行列】 /* * Matrix<T>(int n, int m) : O(n m) * n×m 零行列で初期化する. * * Matrix<T>(int n) : O(n^2) * n×n 単位行列で初期化する. * * Matrix<T>(vvT a) : O(n m) * 二次元配列 a[0..n)[0..m) の要素で初期化する. * * bool empty() : O(1) * 行列が空かを返す. * * A + B : O(n m) * n×m 行列 A, B の和を返す.+= も使用可. * * A - B : O(n m) * n×m 行列 A, B の差を返す.-= も使用可. * * c * A / A * c : O(n m) * n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可. * * A * x : O(n m) * n×m 行列 A と n 次元列ベクトル x の積を返す. * * x * A : O(n m)(やや遅い) * m 次元行ベクトル x と n×m 行列 A の積を返す. * * A * B : O(n m l) * n×m 行列 A と m×l 行列 B の積を返す. * * Mat pow(ll d) : O(n^3 log d) * 自身を d 乗した行列を返す. */ template <class T> struct Matrix { int n, m; // 行列のサイズ(n 行 m 列) vector<vector<T>> v; // 行列の成分 // n×m 零行列で初期化する. Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {} // n×n 単位行列で初期化する. Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {} Matrix() : n(0), m(0) {} // 代入 Matrix(const Matrix&) = default; Matrix& operator=(const Matrix&) = default; // アクセス inline vector<T> const& operator[](int i) const { return v[i]; } inline vector<T>& operator[](int i) { // verify : https://judge.yosupo.jp/problem/matrix_product // inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった. return v[i]; } // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.n) rep(j, a.m) is >> a.v[i][j]; return is; } // 行の追加 void push_back(const vector<T>& a) { Assert(sz(a) == m); v.push_back(a); n++; } // 行の削除 void pop_back() { Assert(n > 0); v.pop_back(); n--; } // サイズ変更 void resize(int n_) { v.resize(n_); n = n_; } void resize(int n_, int m_) { n = n_; m = m_; v.resize(n); rep(i, n) v[i].resize(m); } // 空か bool empty() const { return min(n, m) == 0; } // 比較 bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] += b[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] -= b[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, n) rep(j, m) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector<T> operator*(const vector<T>& x) const { vector<T> y(n); rep(i, n) rep(j, m) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector<T> operator*(const vector<T>& x, const Matrix& a) { vector<T> y(a.m); rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { // verify : https://judge.yosupo.jp/problem/matrix_product Matrix res(n, b.m); rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { // verify : https://judge.yosupo.jp/problem/pow_of_matrix Matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1]; if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【行簡約形(行交換なし)】O(n m min(n, m)) /* * 行基本変形(行交換なし)で n×m 行列 A を行簡約形に変形し,ピボット位置のリストを返す. */ template <class T> vector<pii> row_reduced_form(Matrix<T>& A) { int n = A.n, m = A.m; vector<pii> piv; piv.reserve(min(n, m)); // 未確定の列を記録しておくリスト list<int> rjs; rep(j, m) rjs.push_back(j); rep(i, n) { // 第 i 行の係数を左から走査し非 0 を見つける. auto it = rjs.begin(); for (; it != rjs.end(); it++) if (A[i][*it] != 0) break; // 第 i 行の全てが 0 なら無視する. if (it == rjs.end()) continue; // A[i][j] をピボットに選択する. int j = *it; rjs.erase(it); piv.emplace_back(i, j); // A[i][j] が 1 になるよう行全体を A[i][j] で割る. T Aij_inv = T(1) / A[i][j]; repi(j2, j, m - 1) A[i][j2] *= Aij_inv; // 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる. rep(i2, n) if (A[i2][j] != 0 && i2 != i) { T mul = A[i2][j]; repi(j2, j, m - 1) A[i2][j2] -= A[i][j2] * mul; } } return piv; } //【逆行列】O(n^3) /* * n 次正方行列 mat の逆行列を返す(存在しなければ空) */ template <class T> Matrix<T> inverse_matrix(const Matrix<T>& mat) { // verify : https://judge.yosupo.jp/problem/inverse_matrix int n = mat.n; // 元の行列 mat と単位行列を繋げた拡大行列 v を作る. vector<vector<T>> v(n, vector<T>(2 * n)); rep(i, n) rep(j, n) { v[i][j] = mat[i][j]; if (i == j) v[i][n + j] = 1; } int m = 2 * n; // 注目位置を (i, j)(i 行目かつ j 列目)とする. int i = 0, j = 0; // 拡大行列に対して行基本変形を行い,左側を単位行列にすることを目指す. while (i < n && j < m) { // 同じ列の下方の行から非 0 成分を見つける. int i2 = i; while (i2 < n && v[i2][j] == T(0)) i2++; // 見つからなかったら全て 0 の列があったので mat は非正則 if (i2 == n) return Matrix<T>(); // 見つかったら i 行目とその行を入れ替える. if (i != i2) swap(v[i], v[i2]); // v[i][j] が 1 になるよう行全体を v[i][j] で割る. T vij_inv = T(1) / v[i][j]; repi(j2, j, m - 1) v[i][j2] *= vij_inv; // v[i][j] と同じ列の成分が全て 0 になるよう i 行目を定数倍して減じる. rep(i2, n) { // i 行目だけは引かない. if (i2 == i) continue; T mul = v[i2][j]; repi(j2, j, m - 1) v[i2][j2] -= v[i][j2] * mul; } // 注目位置を右下に移す. i++; j++; } // 拡大行列の右半分が mat の逆行列なのでコピーする. Matrix<T> mat_inv(n, n); rep(i, n) rep(j, n) mat_inv[i][j] = v[i][n + j]; return mat_inv; } //【形式的冪級数】 /* * MFPS() : O(1) * 零多項式 f = 0 で初期化する. * * MFPS(mint c0) : O(1) * 定数多項式 f = c0 で初期化する. * * MFPS(mint c0, int n) : O(n) * n 次未満の項をもつ定数多項式 f = c0 で初期化する. * * MFPS(vm c) : O(n) * f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する. * * set_conv(vm(*CONV)(const vm&, const vm&)) : O(1) * 畳込み用の関数を CONV に設定する. * * c + f, f + c : O(1) f + g : O(n) * f - c : O(1) c - f, f - g, -f : O(n) * c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n |g|) * f / c : O(n) f / g : O(n log n) f / g_sp : O(n |g|) * 形式的冪級数としての和,差,積,商の結果を返す. * g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す. * 制約 : 商では g(0) != 0 * * MFPS f.inv(int d) : O(n log n) * 1 / f mod z^d を返す. * 制約 : f(0) != 0 * * MFPS f.quotient(MFPS g) : O(n log n) * MFPS f.reminder(MFPS g) : O(n log n) * pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n) * 多項式としての f を g で割った商,余り,商と余りの組を返す. * 制約 : g の最高次の係数は 0 でない * * int f.deg(), int f.size() : O(1) * 多項式 f の次数[項数]を返す. * * MFPS::monomial(int d, mint c = 1) : O(d) * 単項式 c z^d を返す. * * mint f.assign(mint c) : O(n) * 多項式 f の不定元 z に c を代入した値を返す. * * f.resize(int d) : O(1) * mod z^d をとる. * * f.resize() : O(n) * 不要な高次の項を削る. * * f >> d, f << d : O(n) * 係数列を d だけ右[左]シフトした多項式を返す. * (右シフトは z^d の乗算,左シフトは z^d で割った商と等価) * * f.push_back(c) : O(1) * 最高次の係数として c を追加する. */ struct MFPS { using SMFPS = vector<pim>; int n; // 係数の個数(次数 + 1) vm c; // 係数列 inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数 // コンストラクタ(0,定数,係数列で初期化) MFPS() : n(0) {} MFPS(mint c0) : n(1), c({ c0 }) {} MFPS(int c0) : n(1), c({ mint(c0) }) {} MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; } MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; } MFPS(const vm& c_) : n(sz(c_)), c(c_) {} MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; } // 代入 MFPS(const MFPS& f) = default; MFPS& operator=(const MFPS& f) = default; MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; } void push_back(mint cn) { c.emplace_back(cn); ++n; } void pop_back() { c.pop_back(); --n; } [[nodiscard]] mint back() { return c.back(); } // 比較 [[nodiscard]] bool operator==(const MFPS& g) const { return c == g.c; } [[nodiscard]] bool operator!=(const MFPS& g) const { return c != g.c; } // アクセス inline mint const& operator[](int i) const { return c[i]; } inline mint& operator[](int i) { return c[i]; } // 次数 [[nodiscard]] int deg() const { return n - 1; } [[nodiscard]] int size() const { return n; } static void set_conv(vm(*CONV_)(const vm&, const vm&)) { // verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci CONV = CONV_; } // 加算 MFPS& operator+=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] += g.c[i]; else { rep(i, n) c[i] += g.c[i]; repi(i, n, g.n - 1) c.push_back(g.c[i]); n = g.n; } return *this; } [[nodiscard]] MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; } // 定数加算 MFPS& operator+=(const mint& sc) { if (n == 0) { n = 1; c = { sc }; } else { c[0] += sc; } return *this; } [[nodiscard]] MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; } [[nodiscard]] friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; } MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; } [[nodiscard]] MFPS operator+(const int& sc) const { return MFPS(*this) += sc; } [[nodiscard]] friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; } // 減算 MFPS& operator-=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] -= g.c[i]; else { rep(i, n) c[i] -= g.c[i]; repi(i, n, g.n - 1) c.push_back(-g.c[i]); n = g.n; } return *this; } [[nodiscard]] MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; } // 定数減算 MFPS& operator-=(const mint& sc) { *this += -sc; return *this; } [[nodiscard]] MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; } [[nodiscard]] friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); } MFPS& operator-=(const int& sc) { *this += -sc; return *this; } [[nodiscard]] MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; } [[nodiscard]] friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); } // 加法逆元 [[nodiscard]] MFPS operator-() const { return MFPS(*this) *= -1; } // 定数倍 MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; } [[nodiscard]] MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; } [[nodiscard]] friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; } MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; } [[nodiscard]] MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; } [[nodiscard]] friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; } // 右からの定数除算 MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; } [[nodiscard]] MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; } MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; } [[nodiscard]] MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; } // 積 MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; } [[nodiscard]] MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; } // 除算 [[nodiscard]] MFPS inv(int d) const { // 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp // verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series //【方法】 // 1 / f mod z^d を求めることは, // f g = 1 (mod z^d) // なる g を求めることである. // この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく. // // d = 1 のときについては // g = 1 / f[0] (mod z^1) // である. // // 次に, // g = h (mod z^k) // が求まっているとして // g mod z^(2 k) // を求める.最初の式を変形していくことで // g - h = 0 (mod z^k) // ⇒ (g - h)^2 = 0 (mod z^(2 k)) // ⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k)) // ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k)) // ⇔ g - 2 h + f h^2 = 0 (mod z^(2 k)) (f g = 1 (mod z^d) より) // ⇔ g = (2 - f h) h (mod z^(2 k)) // を得る. // // この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい. Assert(!c.empty()); Assert(c[0] != 0); MFPS g(c[0].inv()); for (int k = 1; k < d; k <<= 1) { int len = max(min(2 * k, d), 1); MFPS tmp(0, len); rep(i, min(len, n)) tmp[i] = -c[i]; // -f tmp *= g; // -f h tmp.resize(len); tmp[0] += 2; // 2 - f h g *= tmp; // (2 - f h) h g.resize(len); } return g; } MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); } [[nodiscard]] MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; } // 余り付き除算 [[nodiscard]] MFPS quotient(const MFPS& g) const { // 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp // verify : https://judge.yosupo.jp/problem/division_of_polynomials //【方法】 // f(x) = g(x) q(x) + r(x) となる q(x) を求める. // f の次数は n-1, g の次数は m-1 とする.(n ≧ m) // 従って q の次数は n-m,r の次数は m-2 となる. // // f^R で f の係数列を逆順にした多項式を表す.すなわち // f^R(x) := f(1/x) x^(n-1) // である.他の多項式も同様とする. // // 最初の式で x → 1/x と置き換えると, // f(1/x) = g(1/x) q(1/x) + r(1/x) // ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1) // ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1) // ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1) // ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1)) // ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1)) // を得る. // // これで q を mod x^(n-m+1) で正しく求めることができることになるが, // q の次数は n-m であったから,q 自身を正しく求めることができた. if (n < g.n) return MFPS(); return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev(); } [[nodiscard]] MFPS reminder(const MFPS& g) const { // verify : https://judge.yosupo.jp/problem/division_of_polynomials return (*this - this->quotient(g) * g).resize(); } [[nodiscard]] pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const { // verify : https://judge.yosupo.jp/problem/division_of_polynomials pair<MFPS, MFPS> res; res.first = this->quotient(g); res.second = (*this - res.first * g).resize(); return res; } // スパース積 MFPS& operator*=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); mint g0 = 0; if (it0->first == 0) { g0 = it0->second; it0++; } // 後ろからインライン配る DP repir(i, n - 1, 0) { // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { auto [j, gj] = *it; if (i + j >= n) break; c[i + j] += c[i] * gj; } // 定数項は最後に配るか消去しないといけない. c[i] *= g0; } return *this; } [[nodiscard]] MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; } // スパース商 MFPS& operator/=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); Assert(it0->first == 0 && it0->second != 0); mint g0_inv = it0->second.inv(); it0++; // 前からインライン配る DP(後ろに累積効果あり) rep(i, n) { // 定数項は最初に配らないといけない. c[i] *= g0_inv; // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { auto [j, gj] = *it; if (i + j >= n) break; c[i + j] -= c[i] * gj; } } return *this; } [[nodiscard]] MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; } // 係数反転 [[nodiscard]] MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; } // 単項式 [[nodiscard]] static MFPS monomial(int d, mint coef = 1) { MFPS mono(0, d + 1); mono[d] = coef; return mono; } // 不要な高次項の除去 MFPS& resize() { // 最高次の係数が非 0 になるまで削る. while (n > 0 && c[n - 1] == 0) { c.pop_back(); n--; } return *this; } // x^d 以上の項を除去する. MFPS& resize(int d) { n = d; c.resize(d); return *this; } // 不定元への代入 [[nodiscard]] mint assign(const mint& x) const { mint val = 0; repir(i, n - 1, 0) val = val * x + c[i]; return val; } // 係数のシフト MFPS& operator>>=(int d) { n += d; c.insert(c.begin(), d, 0); return *this; } MFPS& operator<<=(int d) { n -= d; if (n <= 0) { c.clear(); n = 0; } else c.erase(c.begin(), c.begin() + d); return *this; } [[nodiscard]] MFPS operator>>(int d) const { return MFPS(*this) >>= d; } [[nodiscard]] MFPS operator<<(int d) const { return MFPS(*this) <<= d; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const MFPS& f) { if (f.n == 0) os << 0; else { rep(i, f.n) { os << f[i] << "z^" << i; if (i < f.n - 1) os << " + "; } } return os; } #endif }; //【畳込み(素朴)】O(n m) /* * a[0..n) と b[0..m) を畳み込んだ数列 c[0..n+m-1) を返す. * すなわち c[k] = Σ_(i+j=k) a[i] b[j] である. */ template <class T> vector<T> naive_convolution(const vector<T>& a, const vector<T>& b) { // verify : https://atcoder.jp/contests/abc214/tasks/abc214_g int n = sz(a), m = sz(b); if (n == 0 || m == 0) return vector<T>(); // c[k] = Σ_(i+j=k) a[i] b[j] vector<T> c(n + m - 1); if (n < m) { rep(i, n) rep(j, m) c[i + j] += a[i] * b[j]; } else { rep(j, m) rep(i, n) c[i + j] += a[i] * b[j]; } return c; } // 遷移行列の係数を計算し,埋め込み用のコードを出力する. // 待てない場合は len_max とか LB_max とかを指定する. void embed_coefs(int COL, int len_max = INF, int LB_max = INF) { vector<string> ss{""}; int idx = 0; vector<pii> piv_prv; repi(len, 0, INF) { dump("----------- len:", len, "--------------"); int L = sz(ss); int LB = min(L, LB_max); dump("L:", L); // (i,j) 成分が naive(ss[i] + ss[j]) であるような行列 mat を得る. Matrix<mll> mat(L, LB); rep(i, L) rep(j, LB) mat[i][j] = naive(ss[i] + ss[j]); //dump("mat:"); dump(mat); // mat に対して行基本変形を行いピボット位置のリスト piv を得る. auto piv = row_reduced_form(mat); dump("piv(", sz(piv), "):"); dump(piv); // rank の更新がなかったら必要な情報は揃ったとみなして打ち切る. if (len == len_max || (sz(piv) > 0 && sz(piv) == sz(piv_prv))) { // たまに失敗する. int DIM = sz(piv); // 選択した行と列をそれぞれ昇順に並べて is, js とする(0 始まりのはず) vi is(DIM), js(DIM); rep(r, DIM) tie(is[r], js[r]) = piv[r]; sort(all(js)); // 基底の変換行列 P を得る. Matrix<mll> P(DIM, DIM); rep(i, DIM) rep(j, DIM) P[i][j] = naive(ss[is[i]] + ss[js[j]]); // P の逆行列 P_inv を得る. auto P_inv = inverse_matrix(P); // 各文字に対応する表現行列を得る. vector<Matrix<mll>> matAs(COL, Matrix<mll>(DIM, DIM)); rep(k, COL) { char c = '0' + k; rep(i, DIM) rep(j, DIM) matAs[k][i][j] = naive(ss[is[i]] + c + ss[js[j]]); matAs[k] = matAs[k] * P_inv; } // 埋め込み用の文字列を出力する. auto to_signed_string = [](mll x) { ll v = x.val(); ll mod = mll::mod(); if (2 * v > mod) v -= mod; return to_string(v); }; string eb = "constexpr int DIM = "; eb += to_string(DIM); eb += ";\n"; eb += "constexpr int COL = "; eb += to_string(COL); eb += ";\n"; eb += "ll matAs[COL][DIM][DIM] = {\n"; rep(k, COL) { eb += "{"; rep(i, DIM) { eb += "{"; rep(j, DIM) eb += to_signed_string(matAs[k][i][j]) + ","; eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "};\n"; eb += "ll vecQ[DIM] = {"; rep(i, DIM) eb += to_signed_string(P[i][0]) + ","; eb.pop_back(); eb += "};\n"; cout << eb; exit(0); } // 基底ガチャ mt19937_64 mt((int)time(NULL)); shuffle(ss.begin() + idx, ss.end(), mt); // 次に長い文字列たちを ss に追加する. int nidx = sz(ss); repi(i, idx, nidx - 1) rep(k, COL) { ss.push_back(ss[i]); ss.back().push_back('0' + k); } idx = nidx; piv_prv = move(piv); } } int D; MFPS solve(const string& s) { // --------------- embed_coefs() からの出力を貼る ---------------- constexpr int DIM = 5; constexpr int COL = 10; ll matAs[COL][DIM][DIM] = { {{1,0,0,0,0},{33999976,-59999960,24999985,-4,5},{137999941,-239999910,99999970,-18,20},{-999134000225,-1484999700,614999925,999880,125},{102001061999745,-180001799999685,75000734999940,-12000171,15000175}}, {{0,1,0,0,0},{34999980,-60999969,24999990,-5,6},{139999950,-241999929,99999980,-20,22},{864999800,-1001478999750,609999950,-125,1000130},{105001069999765,-183001812999725,75000739999960,-15000175,18000179}}, {{0,0,1,0,0},{36999984,-63999978,25999995,-6,7},{143999958,-247999946,101999989,-22,24},{2000868999820,-4001482999790,1000609999970,-1000130,2000135},{111001079999781,-192001829999757,78000746999976,-18000179,21000183}}, {{1,-3,3,0,0},{39999988,-68999987,28000000,-7,8},{149999965,-257999961,105999997,-24,26},{5000877999835,-9001496999820,3000614999985,-2000135,3000140},{120001091999793,-207001850999781,84000755999988,-21000183,24000187}}, {{3,-8,6,0,0},{43999992,-75999996,31000005,-8,9},{157999971,-271999974,112000004,-26,28},{9000891999845,-16001520999840,6000624999995,-3000140,4000145},{132001105999801,-228001875999797,93000766999996,-24000187,27000191}}, {{0,0,0,1,0},{48999990,-84999990,35000000,-8,10},{167999970,-289999970,120000000,-27,30},{14000904999850,-25001539999850,10000630000000,-3000145,5000150},{147001115999805,-255001889999805,105000770000000,-26000191,30000195}}, {{0,0,0,0,1},{54999990,-95999990,40000000,-10,12},{179999970,-311999970,130000000,-30,33},{20000924999850,-36001574999850,15000645000000,-5000150,7000155},{165001129999805,-288001913999805,120000780000000,-30000195,34000199}}, {{1999999,-3999998,1999999,-1,2},{63999988,-112999986,47999998,-12,14},{195999967,-341999964,143999997,-33,36},{29000947999845,-53001615999840,23000662999995,-7000155,9000160},{188001143999801,-331001937999797,140000789999996,-34000199,38000203}}, {{5999997,-11999994,5999997,-2,3},{75999984,-135999978,58999994,-14,16},{215999961,-379999952,161999991,-36,39},{41000973999835,-76001662999820,34000683999985,-9000160,11000165},{216001157999793,-384001961999781,165000799999988,-38000203,42000207}}, {{11999994,-23999988,11999994,-3,4},{90999978,-164999966,72999988,-16,18},{239999952,-425999934,183999982,-39,42},{56001002999820,-105001715999790,48000707999970,-11000165,13000170},{249001171999781,-447001985999757,195000809999976,-42000207,46000211}} }; ll vecQ[DIM] = { 1,4,9,1000035,6000043 }; // -------------------------------------------------------------- // 多項式に整形 auto to_poly = [&](ll val) { MFPS poly; while (val != 0) { ll r = smod(val, BASE); if (2 * r > BASE) r -= BASE; poly.push_back(mint(r)); val = (val - r) / BASE; } return poly; }; MFPS matAsP[COL][DIM][DIM]; MFPS vecQP[DIM]; rep(c, COL) rep(i, DIM) rep(j, DIM) matAsP[c][i][j] = to_poly(matAs[c][i][j]); rep(j, DIM) vecQP[j] = to_poly(vecQ[j]); // mod (z^D - 1) auto get_mod = [&](MFPS& f) { repi(d, D, sz(f) - 1) f[d % D] += f[d]; f.resize(D); }; // 状態 DP array<MFPS, DIM> dp; dp[0] = MFPS(1); auto apply = [&](const array<MFPS, DIM>& x, int col) { array<MFPS, DIM> z; rep(j, DIM) { rep(i, DIM) z[j] += x[i] * matAsP[col][i][j]; } return z; }; repe(c, s) { dp = apply(dp, c - '0'); //rep(i, DIM) get_mod(dp[i]); } MFPS res; rep(i, DIM) res += dp[i] * vecQP[i]; //get_mod(res); return res; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // 愚直を書いて集めたデータをもとに遷移行列を復元する. //【使い方】 // 1. mint naive(文字列) を実装する. // 2. embed_coefs(文字の種類数); を実行する. // 3. 出力を solve() 内に貼る. // 4. auto dp = solve<答えの型>(文字列) で勝手に DP してくれる. // mll::set_mod(1000000000000000003LL); // memo = vector<mll>((int)1e7 + 1, -1); // MFPS::set_conv(naive_convolution); BASE = 1000000; // embed_coefs(10, 1, INF); int T; cin >> T; rep(hoge, T) { dump("------------------------------------------------------"); string s; int x; cin >> s >> x; // dump("naive:", naive(s)); dump("====="); auto f = solve(s); dump(f); f.resize(x + 1); cout << f[x] << "\n"; } }