結果
問題 |
No.3238 Shadow
|
ユーザー |
|
提出日時 | 2025-08-15 22:13:27 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 46 ms / 2,000 ms |
コード長 | 35,050 bytes |
コンパイル時間 | 3,273 ms |
コンパイル使用メモリ | 289,452 KB |
実行使用メモリ | 10,548 KB |
最終ジャッジ日時 | 2025-08-15 22:13:38 |
合計ジャッジ時間 | 5,236 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 17 |
ソースコード
#line 2 "library/template/template.hpp" #include <bits/stdc++.h> #line 3 "library/template/alias.hpp" using ll = long long; using ull = unsigned long long; using ld = long double; using i128 = __int128_t; using u128 = __uint128_t; using pi = std::pair<int, int>; using pl = std::pair<ll, ll>; using vi = std::vector<int>; using vl = std::vector<ll>; using vs = std::vector<std::string>; using vc = std::vector<char>; using vvl = std::vector<vl>; using vd = std::vector<double>; using vp = std::vector<pl>; using vb = std::vector<bool>; template <typename T> struct infinity { static constexpr T max = std::numeric_limits<T>::max(); static constexpr T min = std::numeric_limits<T>::min(); static constexpr T value = std::numeric_limits<T>::max() / 2; static constexpr T mvalue = std::numeric_limits<T>::min() / 2; }; template <typename T> constexpr T INF = infinity<T>::value; constexpr ll inf = INF<ll>; constexpr ld EPS = 1e-8; constexpr ld PI = 3.1415926535897932384626; constexpr int dx[8] = {-1, 0, 1, 0, 1, -1, -1, 1}; constexpr int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; #line 3 "library/template/macro.hpp" #ifndef __COUNTER__ #define __COUNTER__ __LINE__ #endif #define SELECT4(a, b, c, d, e, ...) e #define SELECT3(a, b, c, d, ...) d #define REP_1(a, c) for (ll REP_##c = 0; REP_##c < (ll)(a); ++REP_##c) #define REP1(a) REP_1(a, __COUNTER__) #define REP2(i, a) for (ll i = 0; i < (ll)(a); ++i) #define REP3(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i) #define REP4(i, a, b, c) for (ll i = (ll)(a); i < (ll)(b); i += (ll)(c)) #define rep(...) SELECT4(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__) #define RREP_1(a, c) for (ll RREP_##c = (ll)(a) - 1; RREP_##c >= 0; --RREP_##c) #define RREP1(a) RREP_1(a, __COUNTER__) #define RREP2(i, a) for (ll i = (ll)(a) - 1; i >= 0; --i) #define RREP3(i, a, b) for (ll i = (ll)(b) - 1; i >= (ll)(a); --i) #define rrep(...) SELECT3(__VA_ARGS__, RREP3, RREP2, RREP1)(__VA_ARGS__) #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define INT(...) \ int __VA_ARGS__; \ scan(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ scan(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ scan(__VA_ARGS__) #define CHR(...) \ char __VA_ARGS__; \ scan(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ scan(__VA_ARGS__) #define LD(...) \ ld __VA_ARGS__; \ scan(__VA_ARGS__) #define pb push_back #define eb emplace_back #line 3 "library/template/type-traits.hpp" #line 5 "library/template/type-traits.hpp" template <typename T, typename... Args> struct function_traits_impl { using return_type = T; static constexpr std::size_t arg_size = sizeof...(Args); template <std::size_t idx> using argument_type = typename std::tuple_element<idx, std::tuple<Args...>>::type; using argument_types = std::tuple<Args...>; }; template <typename> struct function_traits_helper; template <typename T, typename Tp, typename... Args> struct function_traits_helper<T (Tp::*)(Args...)> : function_traits_impl<T, Args...> {}; template <typename T, typename Tp, typename... Args> struct function_traits_helper<T (Tp::*)(Args...) const> : function_traits_impl<T, Args...> {}; template <typename T, typename Tp, typename... Args> struct function_traits_helper<T (Tp::*)(Args...)&> : function_traits_impl<T, Args...> {}; template <typename T, typename Tp, typename... Args> struct function_traits_helper<T (Tp::*)(Args...) const&> : function_traits_impl<T, Args...> {}; template <typename F> using function_traits = function_traits_helper<decltype(&std::remove_reference<F>::type::operator())>; template <typename F> using function_return_type = typename function_traits<F>::return_type; template <typename F, std::size_t idx> using function_argument_type = typename function_traits<F>::template argument_type<idx>; template <typename F> using function_argument_types = typename function_traits<F>::argument_types; template <class T> using is_signed_int = std::integral_constant<bool, (std::is_integral<T>::value && std::is_signed<T>::value) || std::is_same<T, __int128_t>::value>; template <class T> using is_unsigned_int = std::integral_constant<bool, (std::is_integral<T>::value && std::is_unsigned<T>::value) || std::is_same<T, __uint128_t>::value>; template <class T> using is_int = std::integral_constant<bool, is_signed_int<T>::value || is_unsigned_int<T>::value>; template <typename T, typename = void> struct is_range : std::false_type {}; template <typename T> struct is_range< T, decltype(all(std::declval<typename std::add_lvalue_reference<T>::type>()), (void)0)> : std::true_type {}; template <std::size_t size> struct int_least { static_assert(size <= 128, "size must be less than or equal to 128"); using type = typename std::conditional< size <= 8, std::int_least8_t, typename std::conditional< size <= 16, std::int_least16_t, typename std::conditional< size <= 32, std::int_least32_t, typename std::conditional<size <= 64, std::int_least64_t, __int128_t>::type>::type>::type>::type; }; template <std::size_t size> using int_least_t = typename int_least<size>::type; template <std::size_t size> struct uint_least { static_assert(size <= 128, "size must be less than or equal to 128"); using type = typename std::conditional< size <= 8, std::uint_least8_t, typename std::conditional< size <= 16, std::uint_least16_t, typename std::conditional< size <= 32, std::uint_least32_t, typename std::conditional<size <= 64, std::uint_least64_t, __uint128_t>::type>::type>::type>::type; }; template <std::size_t size> using uint_least_t = typename uint_least<size>::type; template <typename T> using double_size_int = int_least<std::numeric_limits<T>::digits * 2 + 1>; template <typename T> using double_size_int_t = typename double_size_int<T>::type; template <typename T> using double_size_uint = uint_least<std::numeric_limits<T>::digits * 2>; template <typename T> using double_size_uint_t = typename double_size_uint<T>::type; template <typename T> using double_size = typename std::conditional<std::is_signed<T>::value, double_size_int<T>, double_size_uint<T>>::type; template <typename T> using double_size_t = typename double_size<T>::type; #line 2 "library/template/in.hpp" #include <unistd.h> #line 5 "library/template/in.hpp" namespace fastio { template <std::size_t BUFF_SIZE = 1 << 17, int decimal_precision = 16> struct Scanner { private: template <typename, typename = void> struct has_scan : std::false_type {}; template <class T> struct has_scan<T, decltype(std::declval<T>().scan(std::declval<Scanner&>()), (void)0)> : std::true_type {}; int fd; char buffer[BUFF_SIZE + 1]; int idx, sz; bool state; inline void load() { int len = sz - idx; if (idx < len) return; std::memcpy(buffer, buffer + idx, len); sz = len + read(fd, buffer + len, BUFF_SIZE - len); idx = 0; buffer[sz] = 0; } inline char cur() { if (idx == sz) load(); if (idx == sz) { state = false; return '\0'; } return buffer[idx]; } inline void next() { if (idx == sz) load(); if (idx == sz) return; idx++; } public: Scanner() : Scanner(0) {} explicit Scanner(int fd) : fd(fd), idx(0), sz(0), state(true) {} explicit Scanner(FILE* file) : fd(fileno(file)), idx(0), sz(0), state(true) {} inline char scan_char() { if (idx == sz) load(); return (idx == sz ? '\0' : buffer[idx++]); } Scanner ignore(int n = 1) { if (idx + n > sz) load(); idx += n; return (*this); } inline void skip_space() { if (idx == sz) load(); while (('\t' <= cur() && cur() <= '\r') || cur() == ' ') { if (++idx == sz) load(); } } void scan(char& a) { skip_space(); a = scan_char(); } void scan(std::string& a) { skip_space(); a.clear(); while (cur() != '\0' && (buffer[idx] < '\t' || '\r' < buffer[idx]) && buffer[idx] != ' ') { a += scan_char(); } } template <std::size_t len> void scan(std::bitset<len>& a) { skip_space(); if (idx + len > sz) load(); rrep(i, len) a[i] = (buffer[idx++] != '0'); } template <typename T, typename std::enable_if<is_int<T>::value && !has_scan<T>::value>::type* = nullptr> void scan(T& a) { skip_space(); bool neg = false; if constexpr (std::is_signed<T>::value || std::is_same_v<T, __int128_t>) { if (cur() == '-') { neg = true; next(); } } if (idx + 40 > sz && (idx == sz || ('0' <= buffer[sz - 1] && buffer[sz - 1] <= '9'))) load(); a = 0; while ('0' <= buffer[idx] && buffer[idx] <= '9') { a = a * 10 + (buffer[idx++] & 15); } if constexpr (std::is_signed<T>::value || std::is_same<T, __int128_t>::value) { if (neg) a = -a; } } template <typename T, typename std::enable_if<std::is_floating_point<T>::value && !has_scan<T>::value>::type* = nullptr> void scan(T& a) { skip_space(); bool neg = false; if (cur() == '-') { neg = true; next(); } a = 0; while ('0' <= cur() && cur() <= '9') { a = a * 10 + (scan_char() & 15); } if (cur() == '.') { next(); T n = 0, d = 1; for (int i = 0; '0' <= cur() && cur() <= '9' && i < decimal_precision; ++i) { n = n * 10 + (scan_char() & 15); d *= 10; } while ('0' <= cur() && cur() <= '9') next(); a += n / d; } if (neg) a = -a; } private: template <std::size_t i, typename... Args> void scan(std::tuple<Args...>& a) { if constexpr (i < sizeof...(Args)) { scan(std::get<i>(a)); scan<i + 1, Args...>(a); } } public: template <typename... Args> void scan(std::tuple<Args...>& a) { scan<0, Args...>(a); } template <typename T, typename U> void scan(std::pair<T, U>& a) { scan(a.first); scan(a.second); } template <typename T, typename std::enable_if<is_range<T>::value && !has_scan<T>::value>::type* = nullptr> void scan(T& a) { for (auto& i : a) scan(i); } template <typename T, typename std::enable_if<has_scan<T>::value>::type* = nullptr> void scan(T& a) { a.scan(*this); } void operator()() {} template <typename Head, typename... Tail> void operator()(Head& head, Tail&... tail) { scan(head); operator()(std::forward<Tail&>(tail)...); } template <typename T> Scanner& operator>>(T& a) { scan(a); return *this; } explicit operator bool() const { return state; } friend Scanner& getline(Scanner& sc, std::string& a) { a.clear(); char c; if ((c = sc.scan_char()) == '\0' || c == '\n') return sc; a += c; while ((c = sc.scan_char()) != '\0' && c != '\n') a += c; return sc; } }; Scanner<> sc; } // namespace fastio using fastio::sc; #line 6 "library/template/out.hpp" namespace fastio { struct Pre { char buffer[10000][4]; constexpr Pre() : buffer() { for (int i = 0; i < 10000; ++i) { int n = i; for (int j = 3; j >= 0; --j) { buffer[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; template <std::size_t BUFF_SIZE = 1 << 17, bool debug = false> struct Printer { private: template <typename, bool = debug, class = void> struct has_print : std::false_type {}; template <typename T> struct has_print<T, false, decltype(std::declval<T>().print(std::declval<Printer&>()), (void)0)> : std::true_type {}; template <typename T> struct has_print<T, true, decltype(std::declval<T>().debug(std::declval<Printer&>()), (void)0)> : std::true_type {}; int fd; char buffer[BUFF_SIZE]; int idx; std::size_t decimal_precision; public: Printer() : Printer((debug ? 2 : 1)) {} explicit Printer(int fd) : fd(fd), idx(0), decimal_precision(16) {} explicit Printer(FILE* file) : fd(fileno(file)), idx(0), decimal_precision(16) {} ~Printer() { flush(); } void set_decimal_precision(std::size_t n) { decimal_precision = n; } inline void print_char(char c) { buffer[idx++] = c; if (idx == BUFF_SIZE) flush(); } inline void flush() { idx = write(fd, buffer, idx); idx = 0; } void print(char a) { if constexpr (debug) print_char('\''); print_char(a); if constexpr (debug) print_char('\''); } void print(bool a) { if constexpr (debug) print_char('\''); print_char('0' + a); if constexpr (debug) print_char('\''); } void print(const char* a) { if constexpr (debug) print_char('\"'); for (; *a != '\0'; ++a) print_char(*a); if constexpr (debug) print_char('\"'); } template <std::size_t N> void print(const char (&a)[N]) { if constexpr (debug) print_char('\"'); for (auto i : a) print_char(i); if constexpr (debug) print_char('\"'); } void print(const std::string& a) { if constexpr (debug) print_char('\"'); for (auto i : a) print_char(i); if constexpr (debug) print_char('\"'); } template <std::size_t len> void print(const std::bitset<len>& a) { for (int i = len - 1; i >= 0; --i) print_char('0' + a[i]); } template <typename T, typename std::enable_if<is_int<T>::value && !has_print<T>::value>::type* = nullptr> void print(T a) { if (!a) { print_char('0'); return; } if constexpr (is_signed_int<T>::value) { if (a < 0) { print_char('-'); a = -a; } } if (static_cast<size_t>(idx + 40) >= BUFF_SIZE) flush(); static char stk[40]; int top = 40; while (a >= 10000) { int i = a % 10000; a /= 10000; top -= 4; std::memcpy(stk + top, pre.buffer[i], 4); } if (a >= 1000) { std::memcpy(buffer + idx, pre.buffer[a], 4); idx += 4; } else if (a >= 100) { std::memcpy(buffer + idx, pre.buffer[a] + 1, 3); idx += 3; } else if (a >= 10) { std::memcpy(buffer + idx, pre.buffer[a] + 2, 2); idx += 2; } else { buffer[idx++] = '0' | a; } std::memcpy(buffer + idx, stk + top, 40 - top); idx += 40 - top; } template <typename T, typename std::enable_if<std::is_floating_point<T>::value && !has_print<T>::value>::type* = nullptr> void print(T a) { if (a == infinity<T>::max || a == infinity<T>::value) { print("inf"); return; } if (a == infinity<T>::min || a == infinity<T>::mvalue) { print("-inf"); return; } if (std::isnan(a)) { print("nan"); return; } if (a < 0) { print_char('-'); a = -a; } T b = a; if (b < 1) { print_char('0'); } else { std::string s; while (b >= 1) { s += (char)('0' | (int)std::fmod(b, 10.0)); b /= 10; } for (auto i = s.rbegin(); i != s.rend(); ++i) { print_char(*i); } } print_char('.'); for (std::size_t _ = 0; _ < decimal_precision; ++_) { a *= 10; print_char('0' | (int)std::fmod(a, 10.0)); } } private: template <std::size_t i, typename... Args> void print(const std::tuple<Args...>& a) { if constexpr (i < sizeof...(Args)) { if constexpr (debug) print_char(','); print_char(' '); print(std::get<i>(a)); print<i + 1>(a); } } public: template <typename... Args> void print(const std::tuple<Args...>& a) { if constexpr (debug) print_char('('); if constexpr (sizeof...(Args) != 0) { print(std::get<0>(a)); } print<1, Args...>(a); if constexpr (debug) print_char(')'); } template <typename T, typename U> void print(const std::pair<T, U>& a) { if constexpr (debug) print_char('('); print(a.first); if constexpr (debug) print_char(','); print_char(' '); print(a.second); if constexpr (debug) print_char(')'); } template <typename T, typename std::enable_if<is_range<T>::value>::type* = nullptr> void print(const T& a) { if constexpr (debug) print_char('{'); auto it = std::begin(a); if (it != std::end(a)) { print(*it); while (++it != std::end(a)) { if constexpr (debug) print_char(','); print_char(' '); print(*it); } } if constexpr (debug) print_char('}'); } template <typename T, typename std::enable_if<has_print<T>::value && !debug>::type* = nullptr> void print(const T& a) { a.print(*this); } template <typename T, typename std::enable_if<has_print<T>::value && debug>::type* = nullptr> void print(const T& a) { a.debug(*this); } void operator()() {} template <typename Head, typename... Tail> void operator()(const Head& head, const Tail&... tail) { print(head); operator()(std::forward<const Tail&>(tail)...); } template <typename T> Printer& operator<<(const T& a) { print(a); return *this; } Printer& operator<<(Printer& (*f)(Printer&)) { return f(*this); } }; template <std::size_t BUFF_SIZE, bool debug> Printer<BUFF_SIZE, debug>& endl(Printer<BUFF_SIZE, debug>& out) { out.print_char('\n'); out.flush(); return out; } template <std::size_t BUFF_SIZE, bool debug> Printer<BUFF_SIZE, debug>& flush(Printer<BUFF_SIZE, debug>& out) { out.flush(); return out; } Printer<> pr; Printer<1 << 17, true> prd; } // namespace fastio using fastio::endl; using fastio::flush; using fastio::pr; using fastio::prd; #line 3 "library/template/func.hpp" #line 8 "library/template/func.hpp" inline constexpr int msb(ull x) { int res = x ? 0 : -1; if (x & 0xffffffff00000000) x &= 0xffffffff00000000, res += 32; if (x & 0xffff0000ffff0000) x &= 0xffff0000ffff0000, res += 16; if (x & 0xff00ff00ff00ff00) x &= 0xff00ff00ff00ff00, res += 8; if (x & 0xf0f0f0f0f0f0f0f0) x &= 0xf0f0f0f0f0f0f0f0, res += 4; if (x & 0xcccccccccccccccc) x &= 0xcccccccccccccccc, res += 2; return res + (x & 0xaaaaaaaaaaaaaaaa ? 1 : 0); } inline constexpr int ceil_log2(ull x) { return x ? msb(x - 1) + 1 : 0; } inline constexpr ull reverse(ull x) { x = ((x & 0x5555555555555555) << 1) | ((x & 0xaaaaaaaaaaaaaaaa) >> 1); x = ((x & 0x3333333333333333) << 2) | ((x & 0xcccccccccccccccc) >> 2); x = ((x & 0x0f0f0f0f0f0f0f0f) << 4) | ((x & 0xf0f0f0f0f0f0f0f0) >> 4); x = ((x & 0x00ff00ff00ff00ff) << 8) | ((x & 0xff00ff00ff00ff00) >> 8); x = ((x & 0x0000ffff0000ffff) << 16) | ((x & 0xffff0000ffff0000) >> 16); return (x << 32) | (x >> 32); } inline constexpr ull reverse(ull x, int len) { return reverse(x) >> (64 - len); } inline constexpr int popcnt(ull x) { #if __cplusplus >= 202002L return std::popcount(x); #endif x = (x & 0x5555555555555555) + ((x >> 1) & 0x5555555555555555); x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); x = (x & 0x0f0f0f0f0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f0f0f0f0f); x = (x & 0x00ff00ff00ff00ff) + ((x >> 8) & 0x00ff00ff00ff00ff); x = (x & 0x0000ffff0000ffff) + ((x >> 16) & 0x0000ffff0000ffff); return (x & 0x00000000ffffffff) + ((x >> 32) & 0x00000000ffffffff); } template <typename T, typename U> inline constexpr bool chmin(T& a, U b) { return a > b && (a = b, true); } template <typename T, typename U> inline constexpr bool chmax(T& a, U b) { return a < b && (a = b, true); } inline constexpr ll gcd(ll a, ll b) { if (a < 0) a = -a; if (b < 0) b = -b; while (b) { const ll c = b; b = a % b; a = c; } return a; } inline constexpr ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } inline constexpr bool is_prime(ll n) { if (n <= 1) return false; for (ll i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } inline constexpr ll my_pow(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } inline constexpr ll mod_pow(ll a, ll b, const ll& mod) { if (mod == 1) return 0; a %= mod; ll res = 1; while (b) { if (b & 1) (res *= a) %= mod; (a *= a) %= mod; b >>= 1; } return res; } inline ll mod_inv(ll a, const ll& mod) { ll b = mod, x = 1, u = 0, t; while (b) { t = a / b; std::swap(a -= t * b, b); std::swap(x -= t * u, u); } if (x < 0) x += mod; return x; } template <typename T> T binary_gcd(T x_, T y_) { T x = x_ < 0 ? -x_ : x_, y = y_ < 0 ? -y_ : y_; if (!x || !y) return x + y; int n = __builtin_ctzll(x), m = __builtin_ctzll(y); x >>= n, y >>= m; while (x != y) { if (x > y) { x = (x - y) >> __builtin_ctzll(x - y); } else { y = (y - x) >> __builtin_ctzll(y - x); } } return x << std::min(n, m); } template <typename T, typename U> std::ostream& operator<<(std::ostream& os, const std::pair<T, U>& p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> std::istream& operator>>(std::istream& is, std::pair<T, U>& p) { is >> p.first >> p.second; return is; } template <typename T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) { for (auto it = std::begin(v); it != std::end(v);) { os << *it << ((++it) != std::end(v) ? " " : ""); } return os; } template <typename T> std::istream& operator>>(std::istream& is, std::vector<T>& v) { for (T& in : v) { is >> in; } return is; } inline void scan() {} template <class Head, class... Tail> inline void scan(Head& head, Tail&... tail) { sc >> head; scan(tail...); } template <class T> inline void print(const T& t) { pr << t << '\n'; } template <class Head, class... Tail> inline void print(const Head& head, const Tail&... tail) { pr << head << ' '; print(tail...); } template <class... T> inline void fin(const T&... a) { print(a...); exit(0); } template <typename T> inline void dump(const T& a) { prd << a; } inline void trace() { prd << endl; } template <typename Head, typename... Tail> inline void trace(const Head& head, const Tail&... tail) { dump(head); if (sizeof...(tail)) prd.print_char(','), prd.print_char(' '); trace(tail...); } #ifndef LOCAL #define dbg(...) (void(0)) #else #define dbg(...) \ do { \ prd << #__VA_ARGS__; \ prd.print_char(' '), prd.print_char('='), prd.print_char(' '); \ trace(__VA_ARGS__); \ } while (0) #endif #line 3 "library/template/util.hpp" #line 6 "library/template/util.hpp" template <typename F> struct REC { private: F f; public: explicit constexpr REC(F&& f_) : f(std::forward<F>(f_)) {} template <typename... Args> constexpr auto operator()(Args&&... args) const { return f(*this, std::forward<Args>(args)...); } }; template <typename T, typename Comp = std::less<T>> struct compressor { private: std::vector<T> data; Comp cmp; bool sorted = false; public: compressor() : compressor(Comp()) {} compressor(const Comp& cmp) : cmp(cmp) {} compressor(const std::vector<T>& dat, const Comp& cmp = Comp()) : data(dat), cmp(cmp) {} compressor(std::vector<T>&& dat, const Comp& cmp = Comp()) : data(std::move(dat)), cmp(cmp) {} compressor(std::initializer_list<T> li, const Comp& cmp = Comp()) : data(li.begin(), li.end()), cmp(cmp) {} void push_back(const T& v) { assert(!sorted); data.push_back(v); } void push_back(T&& v) { assert(!sorted); data.push_back(std::move(v)); } template <typename... Args> void emplace_back(Args&&... args) { assert(!sorted); data.emplace_back(std::forward<Args>(args)...); } void push(const std::vector<T>& v) { assert(!sorted); const int n = data.size(); data.resize(v.size() + n); for (int i = 0; i < (int)v.size(); i++) data[i + n] = v[i]; } void build() { assert(!sorted); sorted = 1; std::sort(data.begin(), data.end(), cmp); data.erase(unique(data.begin(), data.end(), [&](const T& l, const T& r) -> bool { return !cmp(l, r) && !cmp(r, l); }), data.end()); } const T& operator[](int k) const& { assert(sorted); return data[k]; } int get_index(const T& v) const { assert(sorted); return int(lower_bound(data.begin(), data.end(), v, cmp) - data.begin()); } void press(std::vector<T>& v) const { assert(sorted); for (auto&& i : v) i = get_index(i); } std::vector<int> pressed(const std::vector<T>& v) const { assert(sorted); std::vector<int> ret(v.size()); for (int i = 0; i < (int)v.size(); i++) ret[i] = get_index(v[i]); return ret; } int size() const { assert(sorted); return data.size(); } }; #line 11 "library/template/template.hpp" using namespace std; #line 3 "library/others/monoid.hpp" namespace Monoid { template <typename M, typename = void> struct has_op : false_type {}; template <typename M> struct has_op<M, decltype((void)M::op)> : true_type {}; template <typename M, typename = void> struct has_id : false_type {}; template <typename M> struct has_id<M, decltype((void)M::id)> : true_type {}; template <typename M, typename = void> struct has_inv : false_type {}; template <typename M> struct has_inv<M, decltype((void)M::inv)> : true_type {}; template <typename M, typename = void> struct has_get_inv : false_type {}; template <typename M> struct has_get_inv<M, decltype((void)M::get_inv)> : true_type {}; template <typename A, typename = void> struct has_mul_op : false_type {}; template <typename A> struct has_mul_op<A, decltype((void)A::mul_op)> : true_type {}; template <typename T, typename = void> struct is_semigroup : false_type {}; template <typename T> struct is_semigroup<T, decltype(declval<typename T::value_type>(), (void)T::op)> : true_type {}; template <typename T, typename = void> struct is_monoid : false_type {}; template <typename T> struct is_monoid<T, decltype(declval<typename T::value_type>(), (void)T::op, (void)T::id)> : true_type {}; template <typename T, typename = void> struct is_group : false_type {}; template <typename T> struct is_group<T, decltype(declval<typename T::value_type>(), (void)T::op, (void)T::id, (void)T::get_inv)> : true_type {}; template <typename T, typename = void> struct is_action : false_type {}; template <typename T> struct is_action<T, typename enable_if<is_monoid<typename T::M>::value && is_semigroup<typename T::E>::value && (has_op<T>::value || has_mul_op<T>::value)>::type> : true_type {}; template <typename T, typename = void> struct is_distributable_action : false_type {}; template <typename T> struct is_distributable_action<T, typename enable_if<is_action<T>::value && !has_mul_op<T>::value>::type> : true_type {}; template <typename T> struct Sum { using value_type = T; static constexpr T op(const T& x, const T& y) { return x + y; } static constexpr T id() { return T(0); } static constexpr T inv(const T& x, const T& y) { return x - y; } static constexpr T get_inv(const T& x) { return -x; } }; template <typename T, T max_value = infinity<T>::value> struct Min { using value_type = T; static constexpr T op(const T& x, const T& y) { return x < y ? x : y; } static constexpr T id() { return max_value; } }; template <typename T, T min_value = infinity<T>::mvalue> struct Max { using value_type = T; static constexpr T op(const T& x, const T& y) { return x < y ? y : x; } static constexpr T id() { return min_value; } }; template <typename T> struct Assign { using value_type = T; static constexpr T op(const T&, const T& x) { return x; } }; template<typename T> struct Gcd{ using value_type = T; static constexpr T op(const T& x, const T& y) { return binary_gcd(x, y); } static constexpr T id() { return T(0); } }; template <typename T, T max_value = infinity<T>::value> struct AssignMin { using M = Min<T, max_value>; using E = Assign<T>; static constexpr T op(const T& x, const T&) { return x; } }; template <typename T, T min_value = infinity<T>::mvalue> struct AssignMax { using M = Max<T, min_value>; using E = Assign<T>; static constexpr T op(const T& x, const T&) { return x; } }; template <typename T> struct AssignSum { using M = Sum<T>; using E = Assign<T>; static constexpr T mul_op(const T& x, int sz, const T&) { return x * sz; } }; template <typename T, T max_value = infinity<T>::value> struct AddMin { using M = Min<T, max_value>; using E = Sum<T>; static constexpr T op(const T& a, const T& b) { return b + a; } }; template <typename T, T min_value = infinity<T>::mvalue> struct AddMax { using M = Max<T, min_value>; using E = Sum<T>; static constexpr T op(const T& a, const T& b) { return b + a; } }; template <typename T> struct AddSum { using M = Sum<T>; using E = Sum<T>; static constexpr T mul_op(const T& x, int sz, const T& y) { return y + x * sz; } }; template <typename T, T max_value = infinity<T>::value> struct ChminMin { using M = Min<T, max_value>; using E = Min<T>; static constexpr T op(const T& x, const T& y) { return y < x ? y : x; } }; template <typename T, T min_value = infinity<T>::mvalue> struct ChminMax { using M = Max<T, min_value>; using E = Min<T>; static constexpr T op(const T& x, const T& y) { return y < x ? y : x; } }; template <typename T, T max_value = infinity<T>::value> struct ChmaxMin { using M = Min<T, max_value>; using E = Max<T>; static constexpr T op(const T& x, const T& y) { return x < y ? y : x; } }; template <typename T, T min_value = infinity<T>::mvalue> struct ChmaxMax { using M = Max<T, min_value>; using E = Max<T>; static constexpr T op(const T& x, const T& y) { return x < y ? y : x; } }; template <typename E_> struct AttachMonoid { using M = E_; using E = E_; using T = typename E_::value_type; static T op(const T& x, const T& y) { return E_::op(y, x); } }; } // namespace Monoid #line 4 "library/ds/segment/segment-tree.hpp" template <typename M> struct SegmentTree { private: using T = typename M::value_type; int n, size; vector<T> data; void update(int k) { data[k] = M::op(data[k << 1], data[k << 1 ^ 1]); } public: SegmentTree() : SegmentTree(0) {} SegmentTree(int n, const T& e = M::id()) : SegmentTree(vector<T>(n, e)) {} SegmentTree(const vector<T>& v) { init(v); } void init(const vector<T>& v) { n = v.size(); size = 1 << ceil_log2(n); data.assign(size << 1, M::id()); rep(i, n) data[size + i] = v[i]; rrep(i, 1, size) update(i); } template <class Upd> void update(int k, const Upd& upd) { k += size; data[k] = upd(data[k]); while (k >>= 1) update(k); } void set(int k, const T& x) { update(k, [&](T) -> T { return x; }); } void apply(int k, const T& x) { update(k, [&](T y) -> T { return M::op(y, x); }); } T operator[](int k) const { return data[size + k]; } T prod(int l, int r) const { l += size, r += size; T sml = M::id(), smr = M::id(); while (l != r) { if (l & 1) sml = M::op(sml, data[l++]); if (r & 1) smr = M::op(data[--r], smr); l >>= 1, r >>= 1; } return M::op(sml, smr); } T all_prod() const { return data[1]; } template <class F> int max_right(int l, const F& f) const { if (l == n) return n; l += size; T sum = M::id(); do { while ((l & 1) == 0) l >>= 1; if (!f(M::op(sum, data[l]))) { while (l < size) { l <<= 1; if (f(M::op(sum, data[l]))) sum = M::op(sum, data[l++]); } return l - size; } sum = M::op(sum, data[l++]); } while ((l & -l) != l); return n; } template <class F> int min_left(int r, const F& f) const { if (r == 0) return 0; r += size; T sum = M::id(); do { --r; while ((r & 1) && r > 1) r >>= 1; if (!f(M::op(data[r], sum))) { while (r < size) { r = (r << 1) ^ 1; if (f(M::op(data[r], sum))) sum = M::op(data[r--], sum); } return r + 1 - size; } sum = M::op(data[r], sum); } while ((r & -r) != r); return 0; } }; template <typename T, T max_value = infinity<T>::max> using RangeMinimumQuery = SegmentTree<Monoid::Min<T, max_value>>; template <typename T, T min_value = infinity<T>::min> using RangeMaximumQuery = SegmentTree<Monoid::Max<T, min_value>>; template <typename T> using RangeSumQuery = SegmentTree<Monoid::Sum<T>>; /** * @brief Segment Tree(セグメント木) */ #line 3 "code.cpp" int main() { LL(n); vl p(n); sc >> p; vl to(n + 1, -1); rep(i, n) to[p[i]] = i; RangeMinimumQuery<ll> rmq(p); while (rmq.all_prod() != inf) { ll v = rmq.all_prod(); ll idx = to[v]; ll mix = idx + 1, miy = v; while (idx > 0 && rmq.prod(0, idx) != inf) { rmq.set(idx, inf); v = rmq.prod(0, idx); idx = to[v]; chmin(mix, idx + 1); chmin(miy, v); } rmq.set(idx, inf); print(mix, miy); } }