結果
問題 |
No.1874 Minimum of Sum of Rectangles
|
ユーザー |
|
提出日時 | 2025-08-18 19:03:23 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 189 ms / 3,000 ms |
コード長 | 7,147 bytes |
コンパイル時間 | 12,976 ms |
コンパイル使用メモリ | 399,652 KB |
実行使用メモリ | 69,152 KB |
最終ジャッジ日時 | 2025-08-18 19:03:44 |
合計ジャッジ時間 | 18,234 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 39 |
コンパイルメッセージ
warning: unused import: `BufWriter` --> src/main.rs:1:22 | 1 | use std::io::{Write, BufWriter}; | ^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: unused import: `Write` --> src/main.rs:1:15 | 1 | use std::io::{Write, BufWriter}; | ^^^^^
ソースコード
use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } // Segment Tree. This data structure is useful for fast folding on intervals of an array // whose elements are elements of monoid I. Note that constructing this tree requires the identity // element of I and the operation of I. // Verified by: yukicoder No. 2220 (https://yukicoder.me/submissions/841554) struct SegTree<I, BiOp> { n: usize, orign: usize, dat: Vec<I>, op: BiOp, e: I, } impl<I, BiOp> SegTree<I, BiOp> where BiOp: Fn(I, I) -> I, I: Copy { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, orign: n_, dat: vec![e; 2 * n - 1], op: op, e: e} } // ary[k] <- v pub fn update(&mut self, idx: usize, v: I) { debug_assert!(idx < self.orign); let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]); } } // [a, b) (half-inclusive) // http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ #[allow(unused)] pub fn query(&self, rng: std::ops::Range<usize>) -> I { let (mut a, mut b) = (rng.start, rng.end); debug_assert!(a <= b); debug_assert!(b <= self.orign); let mut left = self.e; let mut right = self.e; a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a]); } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1], right); } a = a / 2; b = (b - 1) / 2; } (self.op)(left, right) } } // Depends on: datastr/SegTree.rs // Verified by: yukicoder No. 2220 (https://yukicoder.me/submissions/841554) impl<I, BiOp> SegTree<I, BiOp> where BiOp: Fn(I, I) -> I, I: Copy { // Port from https://github.com/atcoder/ac-library/blob/master/atcoder/segtree.hpp #[allow(unused)] fn max_right<F: Fn(I) -> bool>( &self, rng: std::ops::RangeFrom<usize>, f: &F, ) -> usize { let mut l = rng.start; assert!(f(self.e)); if l == self.orign { return self.orign; } l += self.n - 1; let mut sm = self.e; loop { while l % 2 == 1 { l = (l - 1) / 2; } if !f((self.op)(sm, self.dat[l])) { while l < self.n - 1 { l = 2 * l + 1; let val = (self.op)(sm, self.dat[l]); if f(val) { sm = val; l += 1; } } return std::cmp::min(self.orign, l + 1 - self.n); } sm = (self.op)(sm, self.dat[l]); l += 1; if (l + 1).is_power_of_two() { break; } } self.orign } // Port from https://github.com/atcoder/ac-library/blob/master/atcoder/segtree.hpp #[allow(unused)] fn min_left<F: Fn(I) -> bool>( &self, rng: std::ops::RangeTo<usize>, f: &F, ) -> usize { let mut r = rng.end; if !f(self.e) { return r + 1; } if r == 0 { return 0; } r += self.n - 1; let mut sm = self.e; loop { r -= 1; while r > 0 && r % 2 == 0 { r = (r - 1) / 2; } if !f((self.op)(self.dat[r], sm)) { while r < self.n - 1 { r = 2 * r + 2; let val = (self.op)(self.dat[r], sm); if f(val) { sm = val; r -= 1; } } return r + 2 - self.n; } sm = (self.op)(self.dat[r], sm); if (r + 1).is_power_of_two() { break; } } 0 } } // https://yukicoder.me/problems/no/1874 (4) // Q として妥当なのは P の x 座標と y 座標なので、 N^2 通りしかない。 // y 座標を固定して、 x 座標を二分探索することで O(N log N) で解ける。 // 途中で \sum |A_i - Y| の計算が必要になるので、平面走査する。 // -> 同じ x 座標に複数の点が存在し得るのを見逃していた。 // Tags: plane-scanning // Similar-problems: https://yukicoder.me/problems/no/3078 fn main() { input! { n: usize, xy: [(usize, usize); n], } const W: usize = 1_000_001; let mut ev = vec![]; for i in 0..n { let (x, y) = xy[i]; ev.push((y, x)); } ev.sort(); let mut st = SegTree::new(W, |x, y| (x.0 + y.0, x.1 + y.1), (0i64, 0i64)); let mut st_sum = SegTree::new(W, |x, y| (x.0 + y.0, x.1 + y.1), (0i64, 0i64)); for i in 0..n { let (x, y) = xy[i]; let old = st.query(x..x + 1); st.update(x, (old.0 + y as i64, old.1 - 1)); let old_sum = st_sum.query(x..x + 1); st_sum.update(x, (old_sum.0 + x as i64 * y as i64, old_sum.1 - x as i64)); } let mut ans = 1i64 << 60; for (y, x) in ev { let (sum, cnt) = st.query(0..W); let all = sum + cnt * y as i64; let r = st.max_right(0.., &|(sum, cnt)| 2 * (sum + cnt * y as i64) <= all); let (sum, cnt) = st.query(0..r); let (sum_s, cnt_s) = st_sum.query(0..r); let half = -(sum_s + cnt_s * y as i64) + (sum + cnt * y as i64) * r as i64; let (sum, cnt) = st.query(r..W); let (sum_s, cnt_s) = st_sum.query(r..W); let half2 = (sum_s + cnt_s * y as i64) - (sum + cnt * y as i64) * r as i64; ans = ans.min(half + half2); let old = st.query(x..x + 1); st.update(x, (old.0 - 2 * y as i64, old.1 + 2)); let old_sum = st_sum.query(x..x + 1); st_sum.update(x, (old_sum.0 - 2 * x as i64 * y as i64, old_sum.1 + 2 * x as i64)); } println!("{ans}"); }