結果
問題 |
No.1339 循環小数
|
ユーザー |
![]() |
提出日時 | 2025-08-20 21:15:59 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 123 ms / 2,000 ms |
コード長 | 1,461 bytes |
コンパイル時間 | 437 ms |
コンパイル使用メモリ | 82,592 KB |
実行使用メモリ | 78,160 KB |
最終ジャッジ日時 | 2025-08-20 21:16:04 |
合計ジャッジ時間 | 4,878 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 36 |
ソースコード
from itertools import combinations from math import prod def PrimeList(N): P = [1] * (N + 1) P[0] = P[1] = 0 for i in range(2, N + 1): if P[i]: for j in range(i + i, N + 1, i): P[j] = 0 for i in range(N + 1): if P[i] == 1: PL.append(i) maxn = 10 ** 9 maxn2 = int(maxn**0.5) + 1 PL = [] PrimeList(maxn2) from collections import defaultdict def factors(x): F = [] for p in PL: if x % p == 0: F.append(p) while x % p == 0: x //= p if x == 1: return F F.append(x) return F def euler_function(x): F = factors(x) NF = len(F) x0 = x for i in range(1,NF+1): for fs in combinations(F,i): x += x0 // prod(fs) * (-1) ** i return x def solve(N): x = euler_function(N) def make_divisors(n): divisors = [] #必要に応じてsetにしても良いかも i = 1 while i ** 2 <= n: if n % i == 0: divisors.append(i) if i ** 2 != n: divisors.append(n//i) i += 1 divisors.sort() return divisors for _ in range(int(input())): N = int(input()) while N % 2==0: N //= 2 while N % 5 == 0: N //= 5 if N == 1: print(1) continue D = make_divisors(euler_function(N)) for d in D: if pow(10,d,N) == 1: print(d) break