結果
| 問題 |
No.1367 文字列門松
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-08-21 11:30:14 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 70 ms / 2,000 ms |
| コード長 | 7,252 bytes |
| コンパイル時間 | 380 ms |
| コンパイル使用メモリ | 82,424 KB |
| 実行使用メモリ | 67,952 KB |
| 最終ジャッジ日時 | 2025-08-21 11:30:18 |
| 合計ジャッジ時間 | 3,647 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 27 |
ソースコード
from collections import defaultdict, deque, Counter
from heapq import heappop, heappush
from bisect import bisect_left, bisect_right
## gcd(x, y):最大公約数, lcm(x, y):最小公倍数, factorial(n):階乗n!, prem(n, k):nPk(n, k), comb(n, r):二項係数nCr
from math import gcd, lcm, factorial, perm, comb
# 0~9を並び替えるならpermutationsかconbinations,N列のカテゴリを作るにはproduct
from itertools import product, permutations, combinations, accumulate
from functools import lru_cache # @lru_cache(maxsize=128)
import operator
from string import ascii_uppercase, ascii_lowercase, digits # 英字(大文字), 英字(小文字), 数字
MOD = 998244353
def II():
return int(input())
def LI():
return list(input())
def LMI():
return list(map(int, input().split()))
def LMS():
return list(map(str, input().split()))
def LLMI(x):
return [list(map(int, input().split())) for _ in range(x)]
def LLMS(x):
return [list(input()) for _ in range(x)]
def CUM(x: list, func=None, initial: int = None) -> list:
"""
func:累積の仕方を指定する。
operator.mul:掛け算
operator.sub:引き算
max:最大値
min:最小値
initial:初期値, Noneならx[0]が第一引数の数値になる
"""
return list(accumulate(x, func=func, initial=initial))
def yesno(tf: bool):
if tf:
return print("Yes")
else:
return print("No")
class UnionFind:
def __init__(self, n):
self.n = n
self.parents = [-1] * n
def find(self, x):
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
if self.parents[x] > self.parents[y]:
x, y = y, x
self.parents[x] += self.parents[y]
self.parents[y] = x
def size(self, x):
return -self.parents[self.find(x)]
def same(self, x, y):
return self.find(x) == self.find(y)
def members(self, x):
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self):
return [i for i, x in enumerate(self.parents) if x < 0]
def group_count(self):
return len(self.roots())
def group(self):
group_members = defaultdict(list)
for member in range(self.n):
group_members[self.find(member)].append(member)
return group_members
def __str__(self):
return "".join(f"{r}: {m}" for r, m in self.group().items())
def inverse_element(num: int):
"""
逆元の作成
ax ≡ 1 (mod p)となるxは、fetmatの小定理より
a * a^(p-2) ≡ 1 (mod p)であるため、
a^(p-2) (mod p) は逆元である
"""
return pow(num, MOD - 2, MOD)
def make_graph(n: int, lmi: list, idx_0: bool = True, is_direct: bool = False):
graph = [[] for _ in range(n)]
for i in range(len(lmi)):
a, b = lmi[i]
if idx_0:
a -= 1
b -= 1
# 有向グラフであれば1方向にappendする。
graph[a].append(b)
if not is_direct:
graph[b].append(a)
return graph
def bfs(n: int, graph: list[list[int]], s: int = 0, g: int = None):
"""
s:start地点、指定しなければ頂点0から
g:goal地点、指定しなければ端まで
"""
start = (s, 0)
d = deque([start])
TF = [False] * n
while d:
crr, cnt = d.popleft()
TF[crr] = True
# if crr == g:
# return cnt
for nxt in graph[crr]:
if TF[nxt]:
continue
# d.append((nxt, cnt + 1))
TF[nxt] = True
return -1
def dfs(n: int, graph: list[list[int]], s: int = 0, g: int = None):
"""
s:start地点、指定しなければ頂点0から
g:goal地点、指定しなければ端まで
"""
start = (s, 0)
d = deque([start])
TF = [False] * n
while d:
crr, cnt = d.pop()
TF[crr] = True
# if crr == g:
# return cnt
for nxt in graph[crr]:
if TF[nxt]:
continue
# d.append((nxt, cnt + 1))
TF[nxt] = True
def dijkstra(n: int, graph: list[list[int, int]], s: int = 0):
"""
s:start地点、指定しなければ頂点0から
"""
que = []
heappush(que, (0, s))
TF = [False] * n
# 各頂点の最短経路を格納する
ans = [0] * n
while que:
cnt, crr = heappop(que)
if TF[crr]:
continue
# 最短経路確定
TF[crr] = True
ans[crr] = cnt
for nxt, val in graph[crr]:
# 最短経路が確定しているところは除く
if TF[nxt]:
continue
heappush(que, (cnt + val, nxt))
else:
return ans
def make_adjacency_matrix(n: int, nodes: list):
matrix = [[float("INF")] * n for _ in range(n)]
for node in nodes:
v, m, c = node
matrix[v][m] = c
matrix[m][v] = c
for i in range(n):
matrix[i][i] = 0
return matrix
def floyd_warchall_algorithm(n, matrix):
"""
n:
[int]頂点の数
matrix:
[list]隣接行列
"""
for k in range(n):
for i in range(n):
for j in range(n):
matrix[i][j] = min(matrix[i][j], matrix[i][k] + matrix[k][j])
return matrix
def lis(A: list):
length = 0
n = len(A)
dp = [float("INF") for _ in range(n + 1)]
dp[0] = -float("INF")
for i in range(n):
left = 0
right = n
while right - left > 1:
mid = (right + left) // 2
if dp[mid] < A[i]:
left = mid
else:
right = mid
dp[left + 1] = A[i]
length = max(length, left + 1)
return length
def manacher(s):
T = "#" + "#".join(s) + "#"
n = len(T)
P = [0] * n # 各位置での回文半径
C, R = 0, 0 # 中心位置Cと回文右端R
for i in range(n):
mirr = 2 * C - i # iの鏡像位置
if i < R:
P[i] = min(R - i, P[mirr])
# 回文の中心を基準に左右に広げる
a, b = i + P[i] + 1, i - P[i] - 1
while a < n and b >= 0 and T[a] == T[b]:
P[i] += 1
a += 1
b -= 1
# 回文が右端を超えたら中心を更新
if i + P[i] > R:
C, R = i, i + P[i]
return P # 回文半径を返す
def execute():
s = LI()
t = list("kadomatsu")
dp = [[0] * (len(t) + 1) for _ in range(len(s) + 1)]
for i in range(1, len(s) + 1):
for j in range(1, len(t) + 1):
if s[i-1] == t[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
# print(dp)
ans = dp[len(s)][len(t)]
# print(ans)
if len(s) == ans:
print('Yes')
else:
print('No')
if __name__ == "__main__":
T = 1
for _ in range(T):
execute()