結果
| 問題 |
No.3263 違法な散歩道
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-09-06 13:34:00 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,101 bytes |
| コンパイル時間 | 6,646 ms |
| コンパイル使用メモリ | 333,724 KB |
| 実行使用メモリ | 50,552 KB |
| 最終ジャッジ日時 | 2025-09-06 13:34:25 |
| 合計ジャッジ時間 | 13,655 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 WA * 8 |
ソースコード
#ifndef MY_HEADER
#define MY_HEADER
#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
using namespace atcoder;
using lint = long long;
using ulint = unsigned long long;
using llint = __int128_t;
struct edge;
using graph = vector<vector<edge>>;
#define endl '\n'
constexpr int INF = 1<<30;
constexpr lint INF64 = 1LL<<61;
constexpr lint mod107 = 1e9+7;
using mint107 = modint1000000007;
constexpr long mod = 998244353;
using mint = modint998244353;
lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}}
lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}}
lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;}
lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);}
lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;}
double Dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));}
lint DistSqr(lint x1, lint y1, lint x2, lint y2){return (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2); }
string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;}
string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;}
vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j] <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}}
lint Kai[20000001]; bool firstCallnCr = true;
lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=20000000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr = false;} if(n<0)return 0; if(r<0)return 0;
if(n < r)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;}
#define rep(i, n) for(int i = 0; i < n; i++)
#define repp(i, x, y) for(int i = x; i < y; i++)
#define rrep(i, x) for(int i = x-1; i >= 0; i--)
#define vec vector
#define pb push_back
#define eb emplace_back
#define se second
#define fi first
#define al(x) x.begin(),x.end()
#define ral(x) x.rbegin(),x.rend()
struct edge{
edge(lint v, lint c = 1) {to = v, cost = c;}
lint to;
lint cost;
};
#endif
#ifndef MY_HEADER
#define MY_HEADER
#include<bits/stdc++.h>
using namespace std;
struct edge{
int to;
long long cost;
};
#define vec vector
using lint = long long;
constexpr long long INF64 = 1LL<<61;
using graph = vector<vector<edge>>;
#endif
vector<long long>dijkstra(int s, graph &g) {
vec<long long>ret(g.size(), INF64);
priority_queue<pair<lint, lint>>que;
que.push({-0, s});
ret[s] = 0;
vec<bool>went(g.size(), false);
while(!que.empty()) {
auto q = que.top();
que.pop();
if(went[q.second]) continue;
went[q.second] = true;
ret[q.second] = -q.first;
for(auto&& e: g[q.second]) {
if(ret[e.to] > -q.first + e.cost) {
ret[e.to] = -q.first + e.cost;
que.push({-ret[e.to], e.to});
}
}
}
return ret;
}
int main(){
lint N, M;
cin >> N >> M;
graph G(N*5);
vec<int>u(M), v(M);
rep(i, M) {
cin >> u[i] >> v[i];
u[i]--;v[i]--;
}
int K;cin >> K;
vec<bool>mp(100000,false);
rep(i, K) {
int a;cin >> a;
mp[a-1] = true;
}
rep(i, M) {
rep(j, 4) {
if(mp[v[i]]) {
G[u[i] + N*j].eb(v[i] + N*(j+1));
}else {
G[u[i] + N*j].eb(v[i] );
}
if(mp[u[i]]) {
G[v[i] + N*j].eb(u[i] + N*(j+1));
}else {
G[v[i] + N*j].eb(u[i]);
}
}
}
rep(i, N) rep(j, 4) G[i+N*j].eb(i+4*N, 0);
auto d = dijkstra(0, G);
if(d[5*N-1] < INF64) cout << d[5*N-1] << endl;
else cout << -1 << endl;
}