結果

問題 No.3265 地元に帰れば天才扱い!
ユーザー lif4635
提出日時 2025-09-06 14:58:20
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,193 ms / 2,500 ms
コード長 7,753 bytes
コンパイル時間 507 ms
コンパイル使用メモリ 82,596 KB
実行使用メモリ 140,060 KB
最終ジャッジ日時 2025-09-06 14:59:38
合計ジャッジ時間 47,909 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #

# input
import sys
input = sys.stdin.readline
II = lambda : int(input())
MI = lambda : map(int, input().split())
LI = lambda : [int(a) for a in input().split()]
SI = lambda : input().rstrip()
LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)]
LSI = lambda n : [input().rstrip() for _ in range(n)]
MI_1 = lambda : map(lambda x:int(x)-1, input().split())
LI_1 = lambda : [int(a)-1 for a in input().split()]

def graph(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[int]]:
    edge = [set() for i in range(n+1+index)]
    for _ in range(m):
        a,b = map(int, input().split())
        a += index
        b += index
        edge[a].add(b)
        if not dir:
            edge[b].add(a)
    return edge

def graph_w(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[tuple]]:
    edge = [set() for i in range(n+1+index)]
    for _ in range(m):
        a,b,c = map(int, input().split())
        a += index
        b += index
        edge[a].add((b,c))
        if not dir:
            edge[b].add((a,c))
    return edge

mod = 998244353
inf = 1001001001001001001
ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97
ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97
yes = lambda : print("Yes")
no = lambda : print("No")
yn = lambda flag : print("Yes" if flag else "No")
def acc(a:list[int]):
    sa = [0]*(len(a)+1)
    for i in range(len(a)):
        sa[i+1] = a[i] + sa[i]
    return sa

prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1)
alplow = "abcdefghijklmnopqrstuvwxyz"
alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)}
DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]]
DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]
DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]]
prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59]
sys.set_int_max_str_digits(0)
# sys.setrecursionlimit(10**6)
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')

from collections import defaultdict,deque
from heapq import heappop,heappush
from bisect import bisect_left,bisect_right
DD = defaultdict
BSL = bisect_left
BSR = bisect_right

class SegTree:
    __slots__ = ["n", "size", "op", "e", "data"]
    
    def __init__(self, op, e, lst):
        self.n = len(lst)
        self.size = 1 << (self.n - 1).bit_length()
        self.op = op
        self.e = e
        self.data = [e] * (2 * self.size)
        for i in range(self.n):
            self.data[self.size + i] = lst[i]
        for i in range(self.size - 1, 0, -1):
            self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
    
    def get(self, i):
        return self.data[self.size+i]
    
    def add(self, i, x):
        i += self.size
        self.data[i] = self.op(x, self.data[i])
        while i > 1:
            i >>= 1
            self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
    
    def set(self, i, x):
        i += self.size
        self.data[i] = x
        while i > 1:
            i >>= 1
            self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
    
    def prod(self, l, r):
        if r <= l:
            return self.e
        lres = self.e
        rres = self.e
        l += self.size
        r += self.size
        while l < r:
            if l & 1:
                lres = self.op(lres, self.data[l])
                l += 1
            if r & 1:
                r -= 1
                rres = self.op(self.data[r], rres)
            l >>= 1
            r >>= 1
        return self.op(lres, rres)
    
    def all_prod(self):
        return self.data[1]
    
    def max_right(self, l, g):
        assert 0<=l and l<=self.n
        assert g(self.e)
        if l == self.n: return self.n
        l += self.size
        sm = self.e
        while 1:
            while l&1 == 0:
                l >>= 1
            if not(g(self.op(sm, self.data[l]))):
                while l < self.size:
                    l = 2*l
                    nsm = self.op(sm, self.data[l])
                    if g(nsm):
                        sm = nsm
                        l += 1
                return l-self.size
            sm = self.op(sm, self.data[l])
            l += 1
            if (l&-l) == l: break
        return self.n
    
    def min_left(self, r, g):
        if r == -1: r = self.n
        assert 0<=r and r<=self.n
        assert g(self.e)
        if r == 0: return 0
        r += self.size
        sm = self.e
        while 1:
            r -= 1
            while (r>1 and r&1):
                r >>= 1
            if not(g(self.op(self.data[r], sm))):
                while r < self.size:
                    r = 2*r+1
                    nsm = self.op(self.data[r], sm)
                    if g(nsm):
                        sm = nsm
                        r -= 1
                return r + 1 -self.size
            sm = self.op(self.data[r], sm)
            if (r&-r) == r: break
        return 0
    
    def __str__(self):
        return str(self.data[self.size:self.size+self.n])



class DualSegTree: #双対セグ木
    def __init__(self, n, op, id, commutative=False):
        self.n = n
        self.op = op
        self.id = id
        self.log = (n - 1).bit_length()
        self.size = 1 << self.log
        self.d = [id] * self.size
        self.lz = [id] * (2 * self.size)
        self.commutative = commutative

    def build(self, arr):
        for i, a in enumerate(arr):
            self.d[i] = a

    def propagate(self, k):
        if self.lz[k] == self.id: return
        if k < self.size:
            self.lz[2 * k] = self.op(self.lz[k], self.lz[2 * k], )
            self.lz[2 * k + 1] = self.op(self.lz[k], self.lz[2 * k + 1])
        else:
            self.d[k - self.size] = self.op(self.lz[k], self.d[k - self.size])
        self.lz[k] = self.id

    def get(self, p):
        res = self.d[p]
        p += self.size
        for i in range(self.log + 1):
            res = self.op(self.lz[p >> i], res)
        return res

    def apply(self, l, r, f):
        if l == r: return
        l += self.size
        r += self.size
        if not self.commutative:
            for i in range(1, self.log + 1)[::-1]:
                self.propagate(l >> i)
                self.propagate(r >> i)
        while l < r:
            if l & 1:
                self.lz[l] = self.op(f, self.lz[l])
                l += 1
            if r & 1:
                r -= 1
                self.lz[r] = self.op(f, self.lz[r])
            l >>= 1
            r >>= 1

    def all_propagate(self):
        for i in range(1, 2 * self.size):
            self.propagate(i)

    def all_apply(self, f):
        if not self.commutative:
            self.all_propagate()
        self.lz[1] = self.op(f, self.lz[1])

    def get_all(self):
        self.all_propagate()
        return self.d[:self.n]

n, m = MI()

def add(x, y):
    return x + y

def op(x, y):
    return (x[0] + y[0], x[1] + y[1])

def mapp(f, x):
    return (x[0] + x[1] * f, x[1])

s = SegTree(add, 0, [0] * m)
c = DualSegTree(m, add, 0)

aa = []
h = []
lr = []
for i in range(n):
    a, l, r = MI()
    l -= 1
    aa.append(a)
    h.append(i)
    lr.append((l, r))
    
    s.add(h[i], a)
    c.apply(l, r, 1)

ans = 0
for i in range(n):
    a = aa[i]
    l, r = lr[i]
    ans += (r - l) * aa[i] - s.prod(l, r)

q = II()
for _ in range(q):
    i, y, u, v = MI()
    i -= 1
    y -= 1
    u -= 1
    
    a = aa[i]
    l, r = lr[i]
    c.apply(l, r, -1)
    ans += a * c.get(h[i])
    ans -= (r - l) * a - s.prod(l, r)
    
    s.add(h[i], -a)
    h[i] = y
    s.add(y, a)
    lr[i] = (u, v)
    
    ans -= a * c.get(h[i])
    ans += (v - u) * a - s.prod(u, v)
    c.apply(u, v, 1)
    print(ans)
    
0