結果
| 問題 |
No.3265 地元に帰れば天才扱い!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-09-06 14:58:20 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 2,193 ms / 2,500 ms |
| コード長 | 7,753 bytes |
| コンパイル時間 | 507 ms |
| コンパイル使用メモリ | 82,596 KB |
| 実行使用メモリ | 140,060 KB |
| 最終ジャッジ日時 | 2025-09-06 14:59:38 |
| 合計ジャッジ時間 | 47,909 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 21 |
ソースコード
# input
import sys
input = sys.stdin.readline
II = lambda : int(input())
MI = lambda : map(int, input().split())
LI = lambda : [int(a) for a in input().split()]
SI = lambda : input().rstrip()
LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)]
LSI = lambda n : [input().rstrip() for _ in range(n)]
MI_1 = lambda : map(lambda x:int(x)-1, input().split())
LI_1 = lambda : [int(a)-1 for a in input().split()]
def graph(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[int]]:
edge = [set() for i in range(n+1+index)]
for _ in range(m):
a,b = map(int, input().split())
a += index
b += index
edge[a].add(b)
if not dir:
edge[b].add(a)
return edge
def graph_w(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[tuple]]:
edge = [set() for i in range(n+1+index)]
for _ in range(m):
a,b,c = map(int, input().split())
a += index
b += index
edge[a].add((b,c))
if not dir:
edge[b].add((a,c))
return edge
mod = 998244353
inf = 1001001001001001001
ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97
ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97
yes = lambda : print("Yes")
no = lambda : print("No")
yn = lambda flag : print("Yes" if flag else "No")
def acc(a:list[int]):
sa = [0]*(len(a)+1)
for i in range(len(a)):
sa[i+1] = a[i] + sa[i]
return sa
prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1)
alplow = "abcdefghijklmnopqrstuvwxyz"
alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)}
DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]]
DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]
DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]]
prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59]
sys.set_int_max_str_digits(0)
# sys.setrecursionlimit(10**6)
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')
from collections import defaultdict,deque
from heapq import heappop,heappush
from bisect import bisect_left,bisect_right
DD = defaultdict
BSL = bisect_left
BSR = bisect_right
class SegTree:
__slots__ = ["n", "size", "op", "e", "data"]
def __init__(self, op, e, lst):
self.n = len(lst)
self.size = 1 << (self.n - 1).bit_length()
self.op = op
self.e = e
self.data = [e] * (2 * self.size)
for i in range(self.n):
self.data[self.size + i] = lst[i]
for i in range(self.size - 1, 0, -1):
self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
def get(self, i):
return self.data[self.size+i]
def add(self, i, x):
i += self.size
self.data[i] = self.op(x, self.data[i])
while i > 1:
i >>= 1
self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
def set(self, i, x):
i += self.size
self.data[i] = x
while i > 1:
i >>= 1
self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
def prod(self, l, r):
if r <= l:
return self.e
lres = self.e
rres = self.e
l += self.size
r += self.size
while l < r:
if l & 1:
lres = self.op(lres, self.data[l])
l += 1
if r & 1:
r -= 1
rres = self.op(self.data[r], rres)
l >>= 1
r >>= 1
return self.op(lres, rres)
def all_prod(self):
return self.data[1]
def max_right(self, l, g):
assert 0<=l and l<=self.n
assert g(self.e)
if l == self.n: return self.n
l += self.size
sm = self.e
while 1:
while l&1 == 0:
l >>= 1
if not(g(self.op(sm, self.data[l]))):
while l < self.size:
l = 2*l
nsm = self.op(sm, self.data[l])
if g(nsm):
sm = nsm
l += 1
return l-self.size
sm = self.op(sm, self.data[l])
l += 1
if (l&-l) == l: break
return self.n
def min_left(self, r, g):
if r == -1: r = self.n
assert 0<=r and r<=self.n
assert g(self.e)
if r == 0: return 0
r += self.size
sm = self.e
while 1:
r -= 1
while (r>1 and r&1):
r >>= 1
if not(g(self.op(self.data[r], sm))):
while r < self.size:
r = 2*r+1
nsm = self.op(self.data[r], sm)
if g(nsm):
sm = nsm
r -= 1
return r + 1 -self.size
sm = self.op(self.data[r], sm)
if (r&-r) == r: break
return 0
def __str__(self):
return str(self.data[self.size:self.size+self.n])
class DualSegTree: #双対セグ木
def __init__(self, n, op, id, commutative=False):
self.n = n
self.op = op
self.id = id
self.log = (n - 1).bit_length()
self.size = 1 << self.log
self.d = [id] * self.size
self.lz = [id] * (2 * self.size)
self.commutative = commutative
def build(self, arr):
for i, a in enumerate(arr):
self.d[i] = a
def propagate(self, k):
if self.lz[k] == self.id: return
if k < self.size:
self.lz[2 * k] = self.op(self.lz[k], self.lz[2 * k], )
self.lz[2 * k + 1] = self.op(self.lz[k], self.lz[2 * k + 1])
else:
self.d[k - self.size] = self.op(self.lz[k], self.d[k - self.size])
self.lz[k] = self.id
def get(self, p):
res = self.d[p]
p += self.size
for i in range(self.log + 1):
res = self.op(self.lz[p >> i], res)
return res
def apply(self, l, r, f):
if l == r: return
l += self.size
r += self.size
if not self.commutative:
for i in range(1, self.log + 1)[::-1]:
self.propagate(l >> i)
self.propagate(r >> i)
while l < r:
if l & 1:
self.lz[l] = self.op(f, self.lz[l])
l += 1
if r & 1:
r -= 1
self.lz[r] = self.op(f, self.lz[r])
l >>= 1
r >>= 1
def all_propagate(self):
for i in range(1, 2 * self.size):
self.propagate(i)
def all_apply(self, f):
if not self.commutative:
self.all_propagate()
self.lz[1] = self.op(f, self.lz[1])
def get_all(self):
self.all_propagate()
return self.d[:self.n]
n, m = MI()
def add(x, y):
return x + y
def op(x, y):
return (x[0] + y[0], x[1] + y[1])
def mapp(f, x):
return (x[0] + x[1] * f, x[1])
s = SegTree(add, 0, [0] * m)
c = DualSegTree(m, add, 0)
aa = []
h = []
lr = []
for i in range(n):
a, l, r = MI()
l -= 1
aa.append(a)
h.append(i)
lr.append((l, r))
s.add(h[i], a)
c.apply(l, r, 1)
ans = 0
for i in range(n):
a = aa[i]
l, r = lr[i]
ans += (r - l) * aa[i] - s.prod(l, r)
q = II()
for _ in range(q):
i, y, u, v = MI()
i -= 1
y -= 1
u -= 1
a = aa[i]
l, r = lr[i]
c.apply(l, r, -1)
ans += a * c.get(h[i])
ans -= (r - l) * a - s.prod(l, r)
s.add(h[i], -a)
h[i] = y
s.add(y, a)
lr[i] = (u, v)
ans -= a * c.get(h[i])
ans += (v - u) * a - s.prod(u, v)
c.apply(u, v, 1)
print(ans)