結果

問題 No.2751 429-like Number
ユーザー AD010
提出日時 2025-09-06 16:56:22
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
MLE  
実行時間 -
コード長 4,445 bytes
コンパイル時間 3,494 ms
コンパイル使用メモリ 289,688 KB
実行使用メモリ 580,872 KB
最終ジャッジ日時 2025-09-06 16:56:37
合計ジャッジ時間 14,130 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample MLE * 1 -- * 5
other -- * 22
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;

#define ll long long
#define ull unsigned long long
#define ld  long double

using LL = long long; using ULL = unsigned long long;
using VI = vector<int>; using VVI = vector<VI>; using VVVI = vector<VVI>;
using VL = vector<LL>; using VVL = vector<VL>; using VVVL = vector<VVL>;
using VB = vector<bool>; using VVB = vector<VB>; using VVVB = vector<VVB>;
using VD = vector<double>; using VVD = vector<VD>; using VVVD = vector<VVD>;
using VC = vector<char>; using VS = vector<string>; using VVC = vector<VC>;
using PII = pair<int,int>; using PLL = pair<LL,LL>; using PDD = pair<double,double>; using PIL = pair<int,LL>;
using MII = map<int,int>; using MLL = map<LL,LL>;
using SI = set<int>; using SL = set<LL>;
using MSI = multiset<int>; using MSL = multiset<LL>;
template<class T> using MAXPQ = priority_queue<T>;
template<class T> using MINPQ = priority_queue< T, vector<T>, greater<T> >;

const ll MOD = 1000000007;
const ll MOD2 = 998244353;
const ll INF = 1LL << 60;
#define PI  3.14159265358979323846

#define FOR(i, a, b) for(int i = (a); i < (b); ++i)
#define REP(i, n) FOR(i, 0, n)
#define EACH(e, v) for(auto &e : v)
#define RITR(it, v) for(auto it = (v).rbegin(); it != (v).rend(); ++it)
#define ALL(v) v.begin(),v.end()

vector<ll> x8={1,1,1,0,0,-1,-1,-1},y8={1,0,-1,1,-1,1,0,-1};
int dx4[4]={1,-1,0,0}, dy4[4]={0,0,1,-1};

/*
memo
-uf,RMQ(segtree),BIT,BIT2,SegTree,SegTreeLazy
-isprime,Eratosthenes,gcdlcm,factorize,divisors,modpow,moddiv
nCr(+modnCr,inverse,extend_euclid.powmod),tobaseB,tobase10
-dijkstra,Floyd,bellmanford,sccd,topological,treediamiter
-compress1,compress2,rotate90

-co,ci,fo1,fo2,fo3,fo4
-bitsearch,binaryserach
-bfs
-SegTreedec,SegTreeLazydec
*/

struct Eratosthenes{
    vector<int> isPrime;
    vector<int> minfactor;
    vector<int> mebius;

    Eratosthenes(int N){
        isPrime=vector<int>(N+1,1);
        minfactor=vector<int>(N+1,-1);
        mebius=vector<int>(N+1,1);

        isPrime[1]=0;
        minfactor[1]=1;
        for(int i = 2; i <= N; i++){
            if(isPrime[i]){
                minfactor[i] = i;
                mebius[i] = -1;
                for(int j = i*2; j <= N; j += i){
                    isPrime[j] = 0;
                    if(minfactor[j]==-1) minfactor[j] = i;
                    if((j / i) % i == 0) mebius[j] = 0;
                    else mebius[j] = -mebius[j];
                }
            }
        }
    }

    vector<pair<long long,long long>> factorize(int n){
        vector<pair<long long, long long>> res;
        while(n>1){
            int p = minfactor[n];
            int exp = 0;
            while(minfactor[n]==p){
                n /= p;
                exp++;
            }
            res.push_back({p,exp});
        }
        return res;
    }

    template<class T> void divisor_zeta(vector<T> &f){
        int N = f.size();
        for(int i = 2; i < N; i++){
            if(isPrime[i]){
                for(int j = (N - 1)/i; j >= 1; j--){
                    f[j] += f[j*i];
                }
            }
        }
    }

    template<class T> void divisor_mebius(vector<T> &f){
        int N = f.size();
        for(int i = 2; i < N; i++){
            if(isPrime[i]){
                for(int j = 1; j*i < N; j++){
                    f[j] -= f[j*i];
                }
            }
        }
    }
};

int main(){
    cin.tie(0);
    ios_base::sync_with_stdio(0);
    ll Q,M=2500; cin >> Q;
    Eratosthenes E(M);
    ll T = 1e5;
    Eratosthenes ET(T);

    VL p;
    unordered_set<ll> sq;
    for(ll i = 2; i <= T; i++){
        if(ET.isPrime[i]){
            p.push_back(i);
        }
    }

    sq.reserve(1e7);
    for(ll i = 0; i < p.size(); i++){
        if(p[i] <= M) continue;
        for(ll j = i; j < p.size(); j++){
            ll num = p[i]*p[j];
            if(num <= 1e10) sq.insert(num);
            else break;
        }
    }
    
    while(Q--){
        ll A; cin >> A;

        ll cnt = 0;
        for(ll i = 2; i <= M; i++){
            if(E.isPrime[i]){
                while(A % i == 0){
                    A /= i;
                    cnt++;
                }
            }
        }

        //if(sq.count(A)) cnt += 2;
        //else if(A>1) cnt++;

        if(cnt==3 and A==1)cout << "Yes" << '\n';
        else if(cnt==2 and A > 1) cout << "Yes" << '\n';
        else if(cnt==1 and sq.count(A)) cout << "Yes" << '\n';
        else cout << "No" << '\n';

    }
    
}
0