結果

問題 No.3266 岩井星人は見ずにはいられない
ユーザー ecottea
提出日時 2025-09-13 03:01:32
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 10 ms / 2,000 ms
コード長 9,011 bytes
コンパイル時間 4,332 ms
コンパイル使用メモリ 260,052 KB
実行使用メモリ 13,320 KB
最終ジャッジ日時 2025-09-13 03:01:39
合計ジャッジ時間 5,936 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline int getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

using mint = modint998244353;
//using mint = static_modint<(int)1e9+7>;
//using mint = modint; // mint::set_mod(m);

using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
int mute_dump = 0;
int frac_print = 0;
#if __has_include(<atcoder/all>)
namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
#endif
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


//【混合トロピカルアフィン変換の合成 モノイド(逆順)】
/*
* S ∋ f = {a, b, c} : 混合トロピカル一次関数 f(x) = max(min(a + x, b), c) を表す.
* f op g : 合成した混合トロピカル一次関数 g o f を返す.
*/
// verify : https://atcoder.jp/contests/arc082/tasks/arc082_d
using T026 = ll;
using S026 = tuple<T026, T026, T026>; // {add, min, max}
S026 op026(S026 f, S026 g) {
	ll fa, fb, fc, ga, gb, gc;
	tie(fa, fb, fc) = g;
	tie(ga, gb, gc) = f;

	ll A = fa + ga;
	ll B = min(fa + gb, fb);
	ll C = max(min(fa + gc, fb), fc);
	return S026{ A, B, C };
}
S026 e026() { return S026{ 0, T026(INFL), -T026(INFL) }; } // e(x) = max(min(a + 0, ∞), -∞)
#define MixedTropicalRevAffine_monoid S026, op026, e026


//【めぐる式二分探索】O(log|ok - ng|)
/*
* 条件 okQ() を満たす要素 ok と満たさない要素 ng との境界を二分探索する.
* 境界に隣り合うような条件を満たす要素(ok 側)の位置を返す.
* debug_mode = true にして実行すると手元では単調かどうかチェックしながら全探索する.
*/
template <class T, class FUNC>
T meguru_search(T ok, T ng, const FUNC& okQ, bool debug_mode = false) {
	// 参考 : https://twitter.com/meguru_comp/status/697008509376835584
	// verify : https://atcoder.jp/contests/typical90/tasks/typical90_a

	Assert(ok != ng);

#ifdef _MSC_VER	
	// 単調かどうか自信がないとき用
	if (debug_mode) {
		T step = ok < ng ? 1 : -1; T res = ok; bool is_ok = true;
		for (T i = ok; i != ng + step; i += step) {
			auto b = (i == ok ? true : i == ng ? false : okQ(i));
			if (b) {
				if (!is_ok) {
					cout << "not monotony!" << endl;
					for (T i = ok; i != ng + step; i += step) {
						auto b = (i == ok ? true : i == ng ? false : okQ(i));
						cout << i << " : " << b << endl;
					}
					exit(1);
				}
			}
			else {
				if (is_ok) res = i - step;
				is_ok = false;
			}
		}

		return res;
	}
#endif

	// 境界が決定するまで
	while (abs(ok - ng) > 1) {
		// 区間の中間
		T mid = (ok + ng) / 2;

		// 中間が OK かどうかに応じて区間を縮小する.
		if (okQ(mid)) ok = mid;
		else ng = mid;
	}
	return ok;

	/* okQ の定義の雛形
	using T = ll;
	auto okQ = [&](T x) {
		return true || false;
	};
	T x = meguru_search(ok, ng, okQ);
	*/
}


//【累乗(モノイド)】O(log n)
/*
* モノイド (S, op, e) の元 x の n 乗を返す.
*
*(繰り返し二乗法)
*/
template <class S, S(*op)(S, S), S(*e)()>
S pow_monoid(const S& x, ll n) {
	// verify : https://atcoder.jp/contests/abc367/tasks/abc367_e

	S res(e()), pow2 = x;
	while (n > 0) {
		if (n & 1) res = op(res, pow2);
		pow2 = op(pow2, pow2);
		n /= 2;
	}
	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n; ll a; string s;
	cin >> n >> a >> s;

	vector<S026> f(n);
	rep(i, n) {
		if (s[i] == '0') {
			f[i] = { -1, INFL, -INFL };
		}
		else {
			f[i] = { 1, 1200, -INFL };
		}
	}

	vector<S026> acc(n + 1);
	acc[0] = e026();
	rep(i, n) acc[i + 1] = op026(acc[i], f[i]);

	// t 回目のイベントが終了したとき,AC が a 個以上か
	using T = ll;
	auto okQ = [&](T t) {
		dump("t:", t);
		ll q = t / n;
		ll r = t % n;

		auto g = pow_monoid<MixedTropicalRevAffine_monoid>(acc[n], q);
		g = op026(g, acc[r]);

		auto [ad, mn, mx] = g;

		ll sc1200 = max(min(1200LL + ad, mn), mx);
		ll inf = INFL / 2;
		ll scninf = max(min(-inf + ad, mn), mx);
		dump(sc1200, scninf);
		
		ll d1200 = 1200LL - sc1200;
		ll dninf = -inf - scninf;
		dump(d1200, dninf);

		ll c1 = (t - dninf) / 2;
		dump(c1);

		return c1 - (d1200 - dninf) >= a;
	};
	T t = meguru_search(INFL / 4, -1LL, okQ);

	EXIT(t);
}
0