結果
| 問題 |
No.3284 Picnic with Friends
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2025-09-27 05:23:24 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1,011 ms / 7,000 ms |
| コード長 | 7,841 bytes |
| コンパイル時間 | 13,260 ms |
| コンパイル使用メモリ | 399,696 KB |
| 実行使用メモリ | 19,012 KB |
| 最終ジャッジ日時 | 2025-10-08 17:04:32 |
| 合計ジャッジ時間 | 28,941 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
use std::io::Write;
fn run() {
input! {
n: usize,
s: [usize; n],
q: usize,
p: [(usize, usize); q],
}
let mut a = vec![];
let mut l = 0;
while l < p.len() {
let (s, mut t) = p[l];
t += s;
l += 1;
while let Some(&p) = p.get(l) {
if p.0 <= t {
t += p.1;
l += 1;
} else {
break;
}
}
a.push(t - s);
}
let sa = a.iter().sum::<usize>();
let m = (1..).find(|k| *k * *k > sa).unwrap();
let mut imos = vec![0; m + 2];
let mut memo = vec![];
for a in a {
let mut l = 1;
while l <= m && l <= a {
let q = a / l;
let r = m.min(a / q);
imos[l] += q;
imos[r + 1] -= q;
l = r + 1;
}
while l <= a {
let q = a / l;
let r = a / q;
memo.push((l, q));
memo.push((r + 1, !q + 1));
l = r + 1;
}
}
memo.sort();
memo.dedup_by(|a, b| a.0 == b.0 && {
b.1 += a.1;
true
});
for i in 1..imos.len() {
imos[i] += imos[i - 1];
}
for i in 1..memo.len() {
memo[i].1 += memo[i - 1].1;
}
let out = std::io::stdout();
let mut out = std::io::BufWriter::new(out.lock());
for s in s {
let ans = if s <= m {
imos[s]
} else {
let x = memo.upper_bound_by_key(&s, |p| p.0);
memo[x - 1].1
};
writeln!(out, "{}", ans).ok();
}
}
fn main() {
run();
}
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
// ---------- begin radix heap ----------
pub trait RadixKeyType: Copy + Ord + std::ops::BitXor<Output = Self> {
fn leading_zeros(self) -> usize;
fn zero() -> Self;
const SIZE: usize = std::mem::size_of::<Self>() * 8;
fn bsr(self) -> usize {
Self::SIZE - self.leading_zeros() as usize
}
}
pub struct RadixHeap<K, V> {
buf: Vec<Vec<(K, V)>>,
last: K,
}
impl<K, V> RadixHeap<K, V>
where
K: RadixKeyType,
{
pub fn new() -> Self {
RadixHeap {
buf: (0..K::SIZE).map(|_| vec![]).collect(),
last: K::zero(),
}
}
pub fn init(&mut self) {
self.buf.iter_mut().for_each(|p| p.clear());
self.last = K::zero();
}
pub fn push(&mut self, key: K, val: V) {
assert!(self.last <= key);
self.buf[(self.last ^ key).bsr()].push((key, val));
}
pub fn pop(&mut self) -> Option<(K, V)> {
if self.buf[0].is_empty() {
if let Some(x) = self.buf.iter().position(|a| !a.is_empty()) {
let mut a = std::mem::take(&mut self.buf[x]);
self.last = a.iter().map(|p| p.0).min().unwrap();
for (key, val) in a.drain(..) {
self.buf[(self.last ^ key).bsr()].push((key, val));
}
self.buf[x] = a;
}
}
self.buf[0].pop()
}
}
macro_rules! impl_radix_key_type {
($x: ty) => {
impl RadixKeyType for $x {
fn leading_zeros(self) -> usize {
self.leading_zeros() as usize
}
fn zero() -> Self {
0
}
}
};
}
impl_radix_key_type!(u64);
impl_radix_key_type!(u32);
impl_radix_key_type!(usize);
// ---------- end radix heap ----------
// ---------- begin super slice ----------
pub trait SuperSlice {
type Item;
fn lower_bound(&self, key: &Self::Item) -> usize
where
Self::Item: Ord;
fn lower_bound_by<F>(&self, f: F) -> usize
where
F: FnMut(&Self::Item) -> std::cmp::Ordering;
fn lower_bound_by_key<K, F>(&self, key: &K, f: F) -> usize
where
K: Ord,
F: FnMut(&Self::Item) -> K;
fn upper_bound(&self, key: &Self::Item) -> usize
where
Self::Item: Ord;
fn upper_bound_by<F>(&self, f: F) -> usize
where
F: FnMut(&Self::Item) -> std::cmp::Ordering;
fn upper_bound_by_key<K, F>(&self, key: &K, f: F) -> usize
where
K: Ord,
F: FnMut(&Self::Item) -> K;
fn next_permutation(&mut self) -> bool
where
Self::Item: Ord;
fn next_permutation_by<F>(&mut self, f: F) -> bool
where
F: FnMut(&Self::Item, &Self::Item) -> std::cmp::Ordering;
fn prev_permutation(&mut self) -> bool
where
Self::Item: Ord;
}
impl<T> SuperSlice for [T] {
type Item = T;
fn lower_bound(&self, key: &Self::Item) -> usize
where
T: Ord,
{
self.lower_bound_by(|p| p.cmp(key))
}
fn lower_bound_by<F>(&self, mut f: F) -> usize
where
F: FnMut(&Self::Item) -> std::cmp::Ordering,
{
self.binary_search_by(|p| f(p).then(std::cmp::Ordering::Greater))
.unwrap_err()
}
fn lower_bound_by_key<K, F>(&self, key: &K, mut f: F) -> usize
where
K: Ord,
F: FnMut(&Self::Item) -> K,
{
self.lower_bound_by(|p| f(p).cmp(key))
}
fn upper_bound(&self, key: &Self::Item) -> usize
where
T: Ord,
{
self.upper_bound_by(|p| p.cmp(key))
}
fn upper_bound_by<F>(&self, mut f: F) -> usize
where
F: FnMut(&Self::Item) -> std::cmp::Ordering,
{
self.binary_search_by(|p| f(p).then(std::cmp::Ordering::Less))
.unwrap_err()
}
fn upper_bound_by_key<K, F>(&self, key: &K, mut f: F) -> usize
where
K: Ord,
F: FnMut(&Self::Item) -> K,
{
self.upper_bound_by(|p| f(p).cmp(key))
}
fn next_permutation(&mut self) -> bool
where
T: Ord,
{
self.next_permutation_by(|a, b| a.cmp(b))
}
fn next_permutation_by<F>(&mut self, mut f: F) -> bool
where
F: FnMut(&Self::Item, &Self::Item) -> std::cmp::Ordering,
{
use std::cmp::Ordering::*;
if let Some(x) = self.windows(2).rposition(|a| f(&a[0], &a[1]) == Less) {
let y = self.iter().rposition(|b| f(&self[x], b) == Less).unwrap();
self.swap(x, y);
self[(x + 1)..].reverse();
true
} else {
self.reverse();
false
}
}
fn prev_permutation(&mut self) -> bool
where
T: Ord,
{
self.next_permutation_by(|a, b| a.cmp(b).reverse())
}
}
// ---------- end super slice ----------
akakimidori