結果
| 問題 |
No.2677 Minmax Independent Set
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-09-28 15:31:59 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 258 ms / 2,000 ms |
| コード長 | 20,848 bytes |
| コンパイル時間 | 6,442 ms |
| コンパイル使用メモリ | 305,108 KB |
| 実行使用メモリ | 106,408 KB |
| 最終ジャッジ日時 | 2025-09-28 15:32:26 |
| 合計ジャッジ時間 | 18,814 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 61 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<(int)1e9+7>;
//using mint = modint; // mint::set_mod(m);
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
int mute_dump = 0;
int frac_print = 0;
#if __has_include(<atcoder/all>)
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
#endif
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif
// 頂点 0 を virtual な根とする木 par に対する愚直解を計算する.
// virtual な根を考えたくなければ,頂点 0 と接続辺を無視して森として扱えばいい.
ll naive(const vi& par) {
int n = sz(par) + 1;
int mask = 0;
rep(i, n - 1) if (par[i] == 0) mask |= 1 << (i + 1);
int res = 0;
repb(set, n) {
// virtual な根は選択不可とする.
if (getb(set, 0)) continue;
if ((mask & set) != mask) continue;
bool ok = true;
repi(i, 1, n - 1) {
if (getb(set, i) && getb(set, par[i - 1])) {
ok = false;
break;
}
}
if (ok) chmax(res, popcount(set));
}
return res;
}
//【グラフの入力】O(n + m)
/*
* (始点, 終点) の組からなる入力を受け取り,n 頂点 m 辺のグラフを構築して返す.
*
* n : グラフの頂点の数
* m : グラフの辺の数(省略すれば n-1)
* directed : 有向グラフか(省略すれば false)
* zero_indexed : 入力が 0-indexed か(省略すれば false)
*/
Graph read_Graph(int n, int m = -1, bool directed = false, bool zero_indexed = false) {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_bi
Graph g(n);
if (m == -1) m = n - 1;
rep(j, m) {
int a, b;
cin >> a >> b;
if (!zero_indexed) { --a; --b; }
g[a].push_back(b);
if (!directed && a != b) g[b].push_back(a);
}
return g;
}
// (グラフ, 根) を naive() への入力形式に直す.
vi inputform(const Graph& g, int r) {
int n = sz(g);
vi par(n);
function<void(int, int)> dfs = [&](int s, int p) {
par[s] = { p + 1 };
repe(t, g[s]) {
if (t == p) continue;
dfs(t, s);
}
};
dfs(r, -1);
return par;
}
//【根付き木の同型類】O(n log n)
/*
* r を根とする根付き木 g について,各部分木の同型類を分類したリストを返す.
*/
vi rooted_tree_classification(const Graph& g, int r) {
// 参考 : https://chocobaby-aporo.hatenablog.com/entry/2017/12/05/233027
// verify : https://judge.yosupo.jp/problem/rooted_tree_isomorphism_classification
int n = sz(g);
static map<vi, int> to_id;
vi id(n);
function<int(int s, int p)> dfs = [&](int s, int p) {
vi ch;
repe(t, g[s]) {
if (t == p) continue;
ch.push_back(dfs(t, s));
}
sort(all(ch));
if (to_id.count(ch)) id[s] = to_id[ch];
else id[s] = to_id[ch] = sz(to_id);
return id[s];
};
dfs(r, -1);
return id;
}
//【木のランダム生成】O(?)
/*
* n 頂点のランダムな木を返す.
*/
Graph create_random_tree(int n) {
Graph g(n);
static mt19937_64 mt; static bool first_call = true;
if (first_call) {
mt = mt19937_64((int)time(NULL));
first_call = false;
}
uniform_int_distribution<int> rnd(0, n - 1);
dsu d(n);
while (d.size(0) < n) {
int u = rnd(mt), v = rnd(mt);
if (d.same(u, v)) continue;
g[u].emplace_back(v);
g[v].emplace_back(u);
d.merge(u, v);
}
return g;
}
//【木の出力】O(n + m)
/*
* 木を【木の入力】で受け取る入力と同じ形式で出力する.
*
* directed : 有向木か(省略すれば false)
* zero_indexed : 入力が 0-indexed か(省略すれば false)
*/
void write_Tree(const Graph& g, bool directed = false, bool zero_indexed = false) {
int n = sz(g);
cout << n << endl;
rep(s, n) repe(t, g[s]) {
if (!directed && s > t) continue;
int u = s + (!zero_indexed), v = t + (!zero_indexed);
cout << u << " " << v << " " << endl;
}
}
// 遷移行列の係数を計算し,埋め込み用のコードを出力する.
// 待てない場合は lv_max や LT_max を指定する.
tuple<vvl, vvvl, vl> embed_coefs(int lv_min = 0, int lv_max = INF, int LT_max = INF,
vvi treesB_ini = { {} }) {
vvi trees{ {0} };
int idx = 0;
int ID = rooted_tree_classification(Graph{ {1},{0} }, 0)[0];
int PDIM = -1;
repi(lv, 2, INF) {
dump("----------- lv:", lv, "--------------");
// 上用の木と下用の木に整形する.
vvi treesT, treesB;
treesT.push_back(vi{0});
repe(treeB, treesB_ini) treesB.push_back(treeB);
rep(i, idx) repi(p, 0, sz(trees[i])) {
treesT.push_back(trees[i]);
treesT.back().push_back(p);
}
repe(tree, trees) treesB.push_back(tree);
int LT = min(sz(treesT), LT_max); int LB = sz(treesB);
dump("LT:", LT, "LB:", LB);
//dump(treesT); dump(treesB);
// (i,j) 成分が naive(trees[i] join trees[j]) であるような行列 mat を得る.
vvl mat(LT, vl(LB));
rep(i, LT) rep(j, LB) {
vi tree(treesT[i]);
int p0 = tree.back();
tree.pop_back();
int offset = sz(tree);
repe(p, treesB[j]) {
int np = (p == 0 ? p0 : p + offset);
tree.push_back(np);
}
mat[i][j] = naive(tree);
}
//dump("mat:"); dumpel(mat);
// mat から max-plus 線形独立な行を抜き出す.
vi js; int DIM = 0;
rep(j, LB) {
vl coef(DIM, INFL);
rep(j2, DIM) rep(i, LT) {
if (mat[i][js[j2]] == -INFL) continue;
chmin(coef[j2], mat[i][j] - mat[i][js[j2]]);
}
bool ok = true;
rep(i, LT) {
ll val = -INFL;
rep(j2, DIM) {
ll nval = mat[i][js[j2]] + coef[j2];
if (nval < -INFL / 2) continue;
chmax(val, nval);
}
if (val != mat[i][j]) {
ok = false;
break;
}
}
if (!ok) {
js.push_back(j);
DIM++;
}
}
dump("js[0.." + to_string(DIM) + "):"); dump(js);
vvi treesB_sub; repe(j, js) treesB_sub.push_back(treesB[j]); dump_math(treesB_sub);
// rank の更新がなかったら必要な情報は揃ったとみなして打ち切る.
if (lv == lv_max || (lv >= lv_min && DIM == PDIM)) { // たまにミスる
// apply の表現行列を得る.
vvl matA(DIM, vl(DIM, INFL));
rep(j, DIM) {
vl vec(LT);
rep(i, LT) {
vi tree(treesT[i]);
int offset = sz(tree);
repe(p, treesB[js[j]]) {
int np = p + offset;
tree.push_back(np);
}
vec[i] = naive(tree);
}
rep(k, DIM) rep(i, LT) {
if (mat[i][js[k]] == -INFL) continue;
chmin(matA[j][k], vec[i] - mat[i][js[k]]);
}
vl vec2(LT);
rep(i, LT) {
vec2[i] = -INFL;
rep(k, DIM) {
ll nval = mat[i][js[k]] + matA[j][k];
if (nval < -INFL / 2) continue;
chmax(vec2[i], nval);
}
}
if (vec2 != vec) {
dump("ERROR!");
dump("j:", j, "treesB[js[j]]:", treesB[js[j]]);
dump("vec:"); dump(vec);
dump("vec2:"); dump(vec2);
exit(-1);
}
rep(k_el, DIM) {
vl vec_el(LT, -INFL);
rep(k, DIM) {
if (k == k_el) continue;
rep(i, LT) {
auto nval = mat[i][js[k]] + matA[j][k];
if (nval < -INFL / 2) continue;
chmax(vec_el[i], nval);
}
}
if (vec_el == vec) matA[j][k_el] = -INFL;
}
}
// merge の表現テンソルを得る.
vvvl tsrM(DIM, vvl(DIM, vl(DIM, INFL)));
rep(j1, DIM) rep(j2, DIM) {
if (j1 > j2) {
rep(k, DIM) {
tsrM[j1][j2][k] = tsrM[j2][j1][k];
}
}
else {
vl vec(LT);
rep(i, LT) {
vi tree(treesT[i]);
int p0 = tree.back();
tree.pop_back();
int offset = sz(tree);
repe(p, treesB[js[j1]]) {
int np = (p == 0 ? p0 : p + offset);
tree.push_back(np);
}
offset = sz(tree);
repe(p, treesB[js[j2]]) {
int np = (p == 0 ? p0 : p + offset);
tree.push_back(np);
}
vec[i] = naive(tree);
}
rep(k, DIM) rep(i, LT) {
if (mat[i][js[k]] == -INFL) continue;
chmin(tsrM[j1][j2][k], vec[i] - mat[i][js[k]]);
}
vl vec2(LT);
rep(i, LT) {
vec2[i] = -INFL;
rep(k, DIM) {
ll nval = mat[i][js[k]] + tsrM[j1][j2][k];
if (nval < -INFL / 2) continue;
chmax(vec2[i], nval);
}
}
if (vec2 != vec) {
dump("ERROR!");
dump("j1:", j1, "treesB[js[j1]]:", treesB[js[j1]]);
dump("j2:", j2, "treesB[js[j2]]:", treesB[js[j2]]);
dump("vec:"); dump(vec);
dump("vec2:"); dump(vec2);
exit(-1);
}
rep(k_el, DIM) {
vl vec_el(LT, -INFL);
rep(k, DIM) {
if (k == k_el) continue;
rep(i, LT) {
auto nval = mat[i][js[k]] + tsrM[j1][j2][k];
if (nval < -INFL / 2) continue;
chmax(vec_el[i], nval);
}
}
if (vec_el == vec) tsrM[j1][j2][k_el] = -INFL;
}
}
}
// 根を閉じるためのベクトルを得る.
vl vecQ(DIM);
rep(j, DIM) vecQ[j] = mat[0][js[j]];
// 埋め込み用の文字列を出力する.
string eb = "\n";
eb += "constexpr int DIM = ";
eb += to_string(DIM);
eb += ";\n";
eb += "VTYPE matA[DIM][DIM] = {";
rep(j, DIM) {
eb += "{";
rep(k, DIM) eb += to_string(matA[j][k]) + ",";
eb.pop_back();
eb += "},";
}
eb.pop_back();
eb += "};\n";
eb += "VTYPE tsrM[DIM][DIM][DIM] = {";
rep(j1, DIM) {
eb += "{";
rep(j2, DIM) {
eb += "{";
rep(k, DIM) eb += to_string(tsrM[j1][j2][k]) + ",";
eb.pop_back();
eb += "},";
}
eb.pop_back();
eb += "},";
}
eb.pop_back();
eb += "};\n";
eb += "VTYPE vecQ[DIM] = {";
rep(j, DIM) eb += to_string(vecQ[j]) + ",";
eb.pop_back();
eb += "};\n";
cout << eb;
exit(0);
return { matA, tsrM, vecQ };
}
// 基底ガチャ
//mt19937_64 mt((int)time(NULL)); shuffle(trees.begin() + idx, trees.end(), mt);
// 次に大きい木たちを trees に追加する.
int nidx = sz(trees);
repi(i, idx, nidx - 1) rep(p, lv) {
trees.push_back(trees[i]);
trees.back().push_back(p);
Graph g(lv + 1);
rep(j, lv) {
g[j + 1].push_back(trees.back()[j]);
g[trees.back()[j]].push_back(j + 1);
}
auto hash = rooted_tree_classification(g, 0);
if (hash[0] <= ID) {
trees.pop_back();
continue;
}
ID = hash[0];
}
idx = nidx;
PDIM = DIM;
}
return tuple<vvl, vvvl, vl>();
}
template <class VTYPE>
vector<VTYPE> solve(const Graph& g, int r) {
// --------------- embed_coefs() からの出力を貼る ----------------
constexpr int DIM = 2;
VTYPE matA[DIM][DIM] = { {0,1},{0,-4004004004} };
VTYPE tsrM[DIM][DIM][DIM] = {
{{0,-4004004004},{-4004004004,0}},
{{-4004004004,0},{-4004004004,0}}
};
VTYPE vecQ[DIM] = { -4004004004,0 };
// --------------------------------------------------------------
// ここ以降は書き換えなくて良い.
int n = sz(g);
vector<array<VTYPE, DIM>> dp(n);
vector<vector<array<VTYPE, DIM>>> sub(n);
rep(s, n) {
sub[s] = vector<array<VTYPE, DIM>>(sz(g[s]));
rep(j, sz(g[s])) {
sub[s][j].fill((VTYPE)(-INFL));
sub[s][j][0] = 0;
}
}
auto apply = [&](const array<VTYPE, DIM>& x) {
array<VTYPE, DIM> z;
z.fill((VTYPE)(-INFL));
rep(j, DIM) {
rep(k, DIM) chmax(z[k], x[j] + matA[j][k]);
}
return z;
};
auto merge = [&](const array<VTYPE, DIM>& x, const array<VTYPE, DIM>& y) {
array<VTYPE, DIM> z;
z.fill((VTYPE)(-INFL));
rep(j1, DIM) rep(j2, DIM) {
rep(k, DIM) chmax(z[k], x[j1] + y[j2] + tsrM[j1][j2][k]);
}
return z;
};
if (n == 1) {
array<VTYPE, DIM> tmp;
tmp.fill((VTYPE)(-INFL));
tmp[0] = 0;
tmp = apply(tmp);
vector<VTYPE> res(n, (VTYPE)(-INFL));
rep(j, DIM) chmax(res[0], vecQ[j] + tmp[j]);
return res;
}
function<void(int, int, int)> dfs1 = [&](int s, int p, int sj) {
if (p == -1) {
rep(tj, sz(g[s])) {
int t = g[s][tj];
dfs1(t, s, tj);;
}
return;
}
bool first_call = true;
rep(tj, sz(g[s])) {
int t = g[s][tj];
if (t == p) continue;
dfs1(t, s, tj);
if (first_call) {
sub[p][sj] = sub[s][tj];
}
else {
sub[p][sj] = merge(sub[p][sj], sub[s][tj]);
}
first_call = false;
}
sub[p][sj] = apply(sub[p][sj]);
};
dfs1(0, -1, -1);
function<void(int, int, const array<VTYPE, DIM>&)> dfs2 = [&](int s, int p, const array<VTYPE, DIM>& val) {
int J = sz(g[s]);
rep(tj, J) {
int t = g[s][tj];
if (t == p) {
sub[s][tj] = val;
break;
}
}
vector<array<VTYPE, DIM>> acc_l(J);
acc_l[0] = sub[s][0];
repi(tj, 1, J - 1) acc_l[tj] = merge(acc_l[tj - 1], sub[s][tj]);
vector<array<VTYPE, DIM>> acc_r(J);
acc_r[J - 1] = sub[s][J - 1];
repir(tj, J - 2, 0) acc_r[tj] = merge(acc_r[tj + 1], sub[s][tj]);
dp[s] = apply(acc_l[J - 1]);
rep(tj, J) {
int t = g[s][tj];
if (t == p) continue;
if (J == 1) {
array<VTYPE, DIM> tmp;
tmp.fill((VTYPE)(-INFL));
tmp[0] = 0;
dfs2(t, s, apply(tmp));
}
else if (tj == 0) {
dfs2(t, s, apply(acc_r[1]));
}
else if (tj == J - 1) {
dfs2(t, s, apply(acc_l[J - 2]));
}
else {
dfs2(t, s, apply(merge(acc_l[tj - 1], acc_r[tj + 1])));
}
}
};
dfs2(0, -1, array<VTYPE, DIM>());
vector<VTYPE> res(n, (VTYPE)(-INFL));
rep(s, n) {
rep(j, DIM) chmax(res[s], vecQ[j] + dp[s][j]);
}
return res;
}
void bug_find() {
#ifdef _MSC_VER
// 合わない入力例を見つける.
mt19937_64 mt((int)time(NULL));
uniform_int_distribution<ll> rnd(0LL, 1LL << 60);
rep(hoge, 1000) {
//dump("==================================================================================");
int n = rnd(mt) % 15 + 1;
auto g = create_random_tree(n);
auto res_naive = naive(inputform(g, 0));
auto res_solve = solve<ll>(g, 0)[0];
if (res_naive != res_solve) {
cout << "----------error!----------" << endl;
cout << "input:" << endl;
write_Tree(g);
cout << "results:" << endl;
cout << res_naive << endl;
cout << res_solve << endl;
cout << "--------------------------" << endl;
//exit(-1);
}
}
mute_dump = false;
exit(0);
#endif
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
//【方法】
// 愚直を書いて集めたデータをもとに遷移テンソルを復元する.
//【使い方】
// 1. mint naive(親の列) を実装する.
// 2. embed_coefs(); を実行する.
// 3. 出力を solve() 内に貼る.
// 4. auto dp = solve<答えの型>(グラフ, 根) で勝手に DP してくれる.
// INFL = 999;
// bug_find();
// embed_coefs(0, INF, INF);
vvi treesB = { {}, {0,0,0,0,0,0,0} ,{0,1,1,1,1,1,1} };
// embed_coefs(0, INF, INF, treesB);
int n;
cin >> n;
auto g = read_Graph(n);
rep(i, n) { dump("naive:", naive(inputform(g, i))); } dump("======");
auto dp = solve<ll>(g, 0);
dump(dp);
ll res = INFL;
rep(s, n) chmin(res, dp[s]);
cout << res << "\n";
}
/*
----------- lv: 2 --------------
LT: 1 LB: 2
js[0..1):
0
{{}};
----------- lv: 3 --------------
LT: 3 LB: 4
js[0..3):
0 1 2
{{},{0},{0,0}};
----------- lv: 4 --------------
LT: 9 LB: 8
js[0..5):
0 1 2 4 6
{{},{0},{0,0},{0,0,0},{0,1,1}};
----------- lv: 5 --------------
LT: 25 LB: 17
js[0..8):
0 1 2 4 6 8 10 13
{{},{0},{0,0},{0,0,0},{0,1,1},{0,0,0,0},{0,0,1,1},{0,1,1,1}};
----------- lv: 6 --------------
LT: 70 LB: 37
js[0..12):
0 1 2 4 6 8 10 13 17 19 22 28
{{},{0},{0,0},{0,0,0},{0,1,1},{0,0,0,0},{0,0,1,1},{0,1,1,1},{0,0,0,0,0},{0,0,0,1,1},{0,0,1,1,1},{0,1,1,1,1}};
----------- lv: 7 --------------
LT: 190 LB: 85
js[0..17):
0 1 2 4 6 8 10 13 17 19 22 28 37 39 42 49 65
{{},{0},{0,0},{0,0,0},{0,1,1},{0,0,0,0},{0,0,1,1},{0,1,1,1},{0,0,0,0,0},{0,0,0,1,1},{0,0,1,1,1},{0,1,1,1,1},{0,0,0,0,0,0},{0,0,0,0,1,1},{0,0,0,1,1,1},{0,0,1,1,1,1},{0,1,1,1,1,1}};
----------- lv: 8 --------------
LT: 526 LB: 200
----------- lv: 2 --------------
LT: 1 LB: 4
js[0..1):
0
{{}};
----------- lv: 3 --------------
LT: 3 LB: 6
js[0..3):
0 1 2
{{},{0,0,0,0,0,0,0},{0,1,1,1,1,1,1}};
----------- lv: 4 --------------
LT: 9 LB: 10
js[0..3):
0 1 2
{{},{0,0,0,0,0,0,0},{0,1,1,1,1,1,1}};
ERROR!
j: 1 treesB[js[j]]: 0 0 0 0 0 0 0
vec:
1 2 8 3 9 9 2 8 8
vec2:
1 2 7 3 8 8 2 7 7
*/