結果
| 問題 |
No.3332 Consecutive Power Sum (Small)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-10-01 03:26:48 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,913 bytes |
| コンパイル時間 | 2,369 ms |
| コンパイル使用メモリ | 221,076 KB |
| 実行使用メモリ | 15,944 KB |
| 最終ジャッジ日時 | 2025-11-02 21:11:05 |
| 合計ジャッジ時間 | 6,143 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 2 |
| other | WA * 8 TLE * 1 -- * 43 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
//a ^ b mod m
//aがlong longじゃないと危険
template<typename T = long long, typename U, typename V>
T modpow(T a, U b, V m) {
T res = 1;
a %= m;
while (b) {
if (b & 1) res = (res * a) % m;
a = (a * a) % m;
b >>= 1;
}
return res;
}
// miller-Rabin 素数判定(O(log(N)))
bool isprime(long long N) {
if (N <= 1) return 0;
if (N == 2) return 1;
if (N % 2 == 0) return 0;
vector<long long> a = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
long long s = 0, d = N - 1;
while (d % 2 == 0) {
s++;
d >>= 1;
}
for (auto a : a) {
if (a % N == 0) return 1;
long long t, x = modpow<__int128_t>(a, d, N);
if (x != 1) {
for (t = 0; t < s; t++) {
if (x == N - 1) break;
x = __int128_t(x) * x % N;
}
if (t == s) return 0;
}
}
return 1;
}
template<typename T>
T gcd(T a, T b) {
if (a > b) swap(a, b);
while (a != 0){
b %= a;
swap(a, b);
}
return b;
}
// Pollard のロー法
long long pollard(long long N) {
if (N % 2 == 0) return 2;
if (isprime(N)) return N;
auto f = [&](long long x) -> long long {
return (__int128_t(x) * x + 1) % N;
};
long long step = 0;
while (1) {
++step;
long long x = step, y = f(x);
while (1) {
long long p = gcd(y - x + N, N);
if (p == 0 || p == N) break;
if (p != 1) return p;
x = f(x);
y = f(f(y));
}
}
}
//素因数分解(O(N^1/4)log(N)?)
vector<long long> pfact(long long N) {
if (N == 1) return {};
long long p = pollard(N);
if (p == N) return {p};
vector<long long> left = pfact(p);
vector<long long> right = pfact(N / p);
left.insert(left.end(), right.begin(), right.end());
sort(left.begin(), left.end());
return left;
}
vector<long long> get_factor(long long N) {
if (N == 1) return {1};
vector<long long> prime_factors = pfact(N);
map<long long, int> factor_count;
for (long long p : prime_factors) {
factor_count[p]++;
}
vector<long long> divisors = {1};
for (auto& [prime, count] : factor_count) {
vector<long long> new_divisors;
for (long long div : divisors) {
long long power = 1;
for (int i = 0; i <= count; i++) {
new_divisors.push_back(div * power);
power *= prime;
}
}
divisors = new_divisors;
}
sort(divisors.begin(), divisors.end());
return divisors;
}
ll power(ll x, int e){
ll t = 1;
for (int i = 0; i < e; i++) t *= x;
return t;
}
vector<array<ll, 3>> ans;
void solve(ll n, int e) {
ll l = 1, r = 1;
ll t = 1;
while (power(r, e) <= n){
if (t == n){
ans.push_back({e, l, r});
}
if (t <= n) {
r++;
t += power(r, e);
}
else {
t -= power(l, e);
l++;
}
}
return;
}
__int128_t square_sum(ll x){
return (__int128_t)x * (x + 1) * (2 * x + 1) / 6;
}
void solve2(ll n){
vector<ll> factor = get_factor(n);
for (ll d : factor){
auto check = [&](ll mid)->bool {
return square_sum(mid + d - 1) - square_sum(mid - 1) <= n;
};
ll ok = 1, ng = 1<<30;
if (square_sum(ok + d - 1) - square_sum(ok - 1) >= n){
continue;
}
while (abs(ok - ng) > 1){
ll mid = (ok + ng) / 2;
if (check(mid)) ok = mid;
else ng = mid;
}
if (square_sum(ok + d - 1) - square_sum(ok - 1) == n){
ans.push_back({2, ok, ok + d - 1});
}
}
}
int main(){
ll n;
cin >> n;
assert(1 <= n && n <= 1000000000000000000);
solve2(n);
for (int i = 3; i < 60; i++){
solve(n, i);
}
sort(ans.begin(), ans.end());
cout << ans.size() << "\n";
for (auto [e, l, r] : ans){
cout << e << " " << l << " " << r << endl;
}
}