結果
| 問題 |
No.132 点と平面との距離
|
| コンテスト | |
| ユーザー |
はむ吉🐹
|
| 提出日時 | 2016-08-26 19:10:40 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 2,679 ms / 5,000 ms |
| コード長 | 3,011 bytes |
| コンパイル時間 | 706 ms |
| コンパイル使用メモリ | 62,900 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-08 05:26:16 |
| 合計ジャッジ時間 | 4,839 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 3 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:110:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
110 | scanf("%d", &n);
| ~~~~~^~~~~~~~~~
main.cpp:112:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
112 | scanf("%lf %lf %lf", &p[0], &p[1], &p[2]);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
main.cpp:117:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
117 | scanf("%lf %lf %lf", &q[0], &q[1], &q[2]);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#define _CRT_SECURE_NO_WARNINGS
#include <cassert>
#include <ciso646>
#include <cstdio>
#include <cstdlib>
#include <type_traits>
#include <valarray>
#include <vector>
constexpr int DIGITS = 12;
template <typename T> using RowVector = std::valarray<T>;
template <typename T> using Matrix = std::valarray<RowVector<T>>;
template <typename T> T determinant(Matrix<T> a) {
static_assert(std::is_floating_point<T>() == true,
"Use floating point numbers");
auto n = a.size();
assert(n > 0 and a[0].size() == n);
for (decltype(n) i = 0; i < n; i++)
{
for (decltype(n) j = 0; j < n; j++)
{
if (i < j)
{
auto b = a[j][i] / a[i][i];
for (decltype(n) k = 0; k < n; k++)
{
a[j][k] -= a[i][k] * b;
}
}
}
}
T d = 1;
for (decltype(n) i = 0; i < n; i++)
{
d *= a[i][i];
}
return d;
}
template <typename T> T norm(RowVector<T> v) {
static_assert(std::is_floating_point<T>() == true,
"Use floating point numbers");
auto u = v.apply([](T x) {return x * x; });
return std::sqrt(u.sum());
}
template <typename T> RowVector<T> cross_product3(RowVector<T> u, RowVector<T> v) {
assert(u.size() == 3 and v.size() == 3);
auto m1 = u[1] * v[2] - u[2] * v[1];
auto m2 = u[2] * v[0] - u[0] * v[2];
auto m3 = u[0] * v[1] - u[1] * v[0];
RowVector<T> cp = { m1, m2, m3 };
return cp;
}
template <typename T> T volume_of_trigonal_pyramid(RowVector<T> p,
RowVector<T> q1, RowVector<T> q2, RowVector<T> q3) {
auto v1 = q1 - p;
auto v2 = q2 - p;
auto v3 = q3 - p;
Matrix<T> a = { v1, v2, v3 };
return std::abs(determinant(a) / 6);
}
template <typename T> T area_of_triangle(RowVector<T> q1,
RowVector<T> q2, RowVector<T> q3) {
auto v2 = q2 - q1;
auto v3 = q3 - q1;
return norm<T>(cross_product3<T>(v2, v3)) / 2;
}
template <typename T> T dist(RowVector<T> p,
RowVector<T> q1, RowVector<T> q2, RowVector<T> q3) {
auto v = volume_of_trigonal_pyramid(p, q1, q2, q3);
auto s = area_of_triangle(q1, q2, q3);
return v * 3 / s;
}
template <typename T> T sum_of_dist(RowVector<T> p,
std::vector<RowVector<T>> qs){
auto n = qs.size();
T d = 0;
for (decltype(n) i = 0; i < n; i++)
{
for (decltype(n) j = i + 1; j < n; j++)
{
for (decltype(n) k = j + 1; k < n; k++)
{
d += dist(p, qs[i], qs[j], qs[k]);
}
}
}
return d;
}
int main() {
int n;
scanf("%d", &n);
RowVector<double> p(3);
scanf("%lf %lf %lf", &p[0], &p[1], &p[2]);
std::vector<RowVector<double>> qs;
for (decltype(n) i = 0; i < n; i++)
{
RowVector<double> q(3);
scanf("%lf %lf %lf", &q[0], &q[1], &q[2]);
qs.push_back(q);
}
auto ans = sum_of_dist(p, qs);
printf("%.12lf\n", ans);
return EXIT_SUCCESS;
}
はむ吉🐹