結果
| 問題 |
No.2421 entersys?
|
| コンテスト | |
| ユーザー |
norioc
|
| 提出日時 | 2025-10-14 08:34:51 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 10,195 bytes |
| コンパイル時間 | 533 ms |
| コンパイル使用メモリ | 82,352 KB |
| 実行使用メモリ | 253,200 KB |
| 最終ジャッジ日時 | 2025-10-14 08:35:21 |
| 合計ジャッジ時間 | 30,294 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 25 WA * 3 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
n = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
if any(a[i] >= a[i + 1] for i in range(n - 1)):
a, b = [], a
for x in b:
if not a or a[-1] != x:
a.append(x)
n = self.size = len(a)
num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // num_bucket: n * (i + 1) // num_bucket] for i in range(num_bucket)]
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1: len(s) - 1] + "}"
def _position(self, x: T) -> tuple[list[T], int, int]:
"return the bucket, index of the bucket and position in which x should be. self must not be empty."
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a, b, i = self._position(x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b + 1] = [a[:mid], a[mid:]]
return True
def _pop(self, a: list[T], b: int, i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x: T) -> T | None:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> T | None:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> T | None:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> T | None:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
class IntervalSet:
INF = 1 << 60
def __init__(self):
self.ss = SortedSet()
self.ss.add((IntervalSet.INF * 2, IntervalSet.INF)) # (r, l)
def __len__(self):
return len(self.ss) - 1
def __iter__(self):
for r, l in self.ss:
if l == IntervalSet.INF: break
yield l, r
def _overlap(self, l1: int, r1: int, l2: int, r2: int) -> int:
"""二つの半開区間 [l1, r1), [l2, r2) の重なりを求める"""
assert l1 < r1 and l2 < r2
start = max(l1, l2)
end = min(r1, r2)
return max(0, end - start)
def overlap_length(self, l: int, r: int) -> int:
"""半開区間 [l, r) との重なり幅を返す"""
assert 0 <= l < r < IntervalSet.INF
t = self.ss.ge((l+1, -1))
assert t is not None
sr, sl = t # [sl, sr)
if r < sl:
return 0
if sl <= l and r <= sr:
return r - l
if r <= sr:
return r - max(l, sl)
wid = self._overlap(l, r, sl, sr)
return wid + self.overlap_length(sr, r)
def merge(self, l: int, r: int) -> tuple[int, int, int]:
"""
半開区間 [l, r) をマージする。
マージ後の半開区間と、入力 [l, r) との重なり幅を返す
return: 既存の区間との重なり総幅, マージ後の半開区間(l, r)
"""
assert 0 <= l < r
t = self.ss.ge((l, -1))
assert t is not None
sr, sl = t # [sl, sr)
if r < sl:
self.ss.add((r, l))
return 0, l, r
if sl <= l and r <= sr:
return r-l, sl, sr
self.ss.discard(t)
start = min(l, sl)
if r <= sr:
self.ss.add((sr, start))
return r-sl, start, sr
wid, tl, tr = self.merge(start, r)
wid += self._overlap(l, r, sl, sr)
return wid, tl, tr
class Compression:
def __init__(self, iterable):
self.vs = sorted(set(iterable))
self.v2i = {}
for i, val in enumerate(self.vs):
self.v2i[val] = i
def __len__(self):
return len(self.vs)
def index(self, val):
"""val のインデックスを返す"""
return self.v2i[val]
def value(self, index):
"""インデックスに対応する値を返す"""
return self.vs[index]
def map(self, iterable):
return [self.index(x) for x in iterable]
class FenwickTree:
def __init__(self, n: int):
self.data = [0] * (n+10)
self.n = (n+10)
def add(self, p: int, x: int):
assert 0 <= p < self.n
p += 1
while p < len(self.data):
self.data[p] += x
p += p & -p
def sum(self, p: int) -> int:
"""区間 [0, p] の和"""
assert 0 <= p < self.n
p += 1
s = 0
while p > 0:
s += self.data[p]
p -= p & -p
return s
def rangesum(self, l: int, r: int) -> int:
"""区間 [l, r] の和"""
assert 0 <= l <= r < self.n
s = self.sum(r)
if l > 0:
s -= self.sum(l-1)
return s
class RAQ:
def __init__(self, n: int):
self.a = FenwickTree(n + 10)
self.b = FenwickTree(n + 10)
self.n = n
def add(self, l: int, r: int, x: int) -> None:
"""区間 [l, r] に x を加算"""
assert 0 <= l <= r < self.n
l += 1
r += 1
self.a.add(l, -x * (l - 1))
self.b.add(l, x)
self.a.add(r + 1, x * r)
self.b.add(r + 1, -x)
def sum(self, l: int, r: int) -> int:
"""区間 [l, r] の和"""
assert 0 <= l <= r < self.n
l += 1
r += 1
a = self.a
b = self.b
res = a.sum(r) + b.sum(r) * r
res -= a.sum(l - 1) + b.sum(l - 1) * (l - 1)
return res
def get(self, p: int) -> int:
return self.sum(p, p)
from collections import defaultdict
N = int(input())
events = []
ts = set()
for _ in range(N):
ss = input().split()
X = ss[0]
L = int(ss[1])
R = int(ss[2])
events.append((X, L, R))
ts.add(L)
ts.add(R)
Q = int(input())
queries = []
for _ in range(Q):
qs = input().split()
match qs:
case ('1', x, t):
queries.append((1, x, int(t)))
ts.add(int(t))
case ('2', t):
queries.append((2, int(t)))
ts.add(int(t))
case ('3', x, l, r):
queries.append((3, x, int(l), int(r)))
ts.add(int(l))
ts.add(int(r))
comp = Compression(ts)
d = defaultdict(IntervalSet)
raq = RAQ(len(comp))
for x, l, r in events:
ltime = comp.index(l)
rtime = comp.index(r)
d[x].merge(ltime, rtime)
raq.add(ltime, rtime, 1)
for i in range(len(queries)):
match queries[i]:
case (1, x, t):
time = comp.index(t)
res = d[x].overlap_length(time, time+1)
if res > 0:
print('Yes')
else:
print('No')
case (2, t):
time = comp.index(t)
print(raq.get(time))
case (3, x, l, r):
ltime = comp.index(l)
rtime = comp.index(r)
d[x].merge(ltime, rtime)
raq.add(ltime, rtime, 1)
norioc