結果

問題 No.3228 Very Large Fibonacci Sum
ユーザー bandai
提出日時 2025-10-15 15:13:24
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 12,377 bytes
コンパイル時間 6,324 ms
コンパイル使用メモリ 335,548 KB
実行使用メモリ 7,720 KB
最終ジャッジ日時 2025-10-15 15:13:32
合計ジャッジ時間 8,178 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
using namespace atcoder;

template <typename T>
using vc = vector<T>;
template <typename T>
using vv = vc<vc<T>>;

//-------------1.型系---------------
using ll = long long;
ll INF = 2e18;

using ld = long double;
using bl = bool;
using mint = modint998244353;
// using mint = modint1000000007;
//     using mint = modint;
//     mint::set_mod(m);

template <class T>
using pq = priority_queue<T, vc<T>>;
template <class T>
using pq_g = priority_queue<T, vc<T>, greater<T>>;
//-----------------------------------

//-------------2.配列系--------------

using pii = pair<int, int>;
using pll = pair<long long, long long>;

#define rep(i, n) for (ll i = 0; i < (n); ++i)
template <class T>
istream& operator>>(istream& i, vc<T>& v) {
    rep(j, size(v)) i >> v[j];
    return i;
}

using ar2 = array<ll, 2>;

//----------------------------------

//--------3.コード短縮化とか---------
const double PI = 3.141592653589793238;
const int inf = 1073741823;
const ll infl = 1LL << 60;
const string ABC = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string abc = "abcdefghijklmnopqrstuvwxyz";

#define rep(i, n) for (ll i = 0; i < (n); ++i)
#define drep(i, n) for (ll i = (n) - 1; i >= 0; --i)
#define nfor(i, s, n) for (ll i = s; i < n; i++)
#define dfor(i, s, n) for (ll i = (s) - 1; i >= n; i--)

#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()

#define chmax(x, y) x = max(x, y)
#define chmin(x, y) x = min(x, y)

#define Yes cout << "Yes" << endl
#define No cout << "No" << endl
#define YN                     \
    {                          \
        cout << "Yes" << endl; \
    }                          \
    else {                     \
        cout << "No" << endl;  \
    }  // if(a==b)YN;

#define vc_unique(v) v.erase(unique(v.begin(), v.end()), v.end());
#define vc_rotate(v) rotate(v.begin(), v.begin() + 1, v.end());

#define pop_cnt(s) ll(popcount(uint64_t(s)))

#define next_p(v) next_permutation(v.begin(), v.end())

//-------------------------------

//---------4.グリッド系----------
vector<int> dx = {1, 0, -1, 0};  //  dx={1,1,0,-1,-1,-1,0,1};
vector<int> dy = {0, 1, 0, -1};  //  dy={0,1,1,1,0,-1,-1,-1};

bool out_grid(ll i, ll j, ll h, ll w = -1) {
    if (w == -1) {
        w = h;
    }
    return (!(0 <= i && i < h && 0 <= j && j < w));
}

#define vvl_rotate(v)                                   \
    {                                                   \
        ll n = size(v);                                 \
        vvl nx(n, vl(n));                               \
        rep(i, n) rep(j, n) nx[j][n - i - 1] = v[i][j]; \
        swap(nx, v);                                    \
    }  // 時計回りに90°回転
// #define vvl_rotate(v) {ll n = size(v);vvl
// nx(n,vl(n));rep(i,n)rep(j,n)nx[n-j-1][i]=v[i][j];swap(nx,v);}//反時計周りに90°回転

#define vs_rotate(v)                                    \
    {                                                   \
        ll n = size(v);                                 \
        vs nx(n, string(n, '.'));                       \
        rep(i, n) rep(j, n) nx[j][n - i - 1] = v[i][j]; \
        swap(nx, v);                                    \
    }  // 文字列版 時計回りに90°回転
// #define vs_rotate(v) {ll n = size(v);vs
// nx(n,string(n,'.'));rep(i,n)rep(j,n)nx[n-j-1][i]=v[i][j];swap(nx,v);}//文字列版 反時計周りに90°回転

#define vvl_transpos(v)                         \
    {                                           \
        ll n = size(v);                         \
        vvl nx(n, vl(n));                       \
        rep(i, n) rep(j, n) nx[j][i] = v[i][j]; \
        swap(nx, v);                            \
    }
#define vs_transpos(v)                          \
    {                                           \
        ll n = size(v);                         \
        vs nx(n, string(n, '.'));               \
        rep(i, n) rep(j, n) nx[j][i] = v[i][j]; \
        swap(nx, v);                            \
    }

//--------------------------------

//-----------5.数学系--------------
#define euclid(x, y) ((x) * (x) + (y) * (y))  // ユークリッド距離 2乗のまま
#define manhattan(x1, x2, y1, y2) \
    (abs(x1 - x2) + abs(y1 - y2))  // マンハッタン距離 = |x1-x2|+|y1-y2|

template <class T>
T tousa_sum1(T l, T d, T r) {  // 初項,公差,末項 で総和を求める
    T wide = (r - l) / d + 1;
    return (l + r) * wide / 2;
}
template <class T>
T tousa_sum2(T a, T d, T n) {  // 初項,交差,項数 で総和を求める
    return (a * 2 + d * (n - 1)) * n / 2;
}
ll kousa_kousuu(ll l, ll r, ll d) {  // 初項,末項,交差 で等差数列の項数を求める
    return (r - l) / d + 1;
}
mint touhi_sum(mint a, mint r,
               ll n) {  // 初項,公比,項数で等比数列の総和を求める
    if (r == 1) {
        return a * n;
    }
    mint bunsi = a * (r.pow(n) - mint(1));
    mint bunbo = r - 1;
    return bunsi / bunbo;
}

ll nc2(ll x) { return x * (x - 1) / 2; }
ll nc3(ll x) { return x * (x - 1) * (x - 2) / 6; }

//----------------------------------------------

//-----------6.デバックや出力系------------------
void print(ld x) { printf("%.20Lf\n", x); }

#define print_vec(v)                   \
    {                                  \
        ll n = size(v);                \
        rep(i, n) cout << v[i] << " "; \
        cout << endl;                  \
    }  // 一次元配列を出力する(改行なし)

#define vc_cout(v)                      \
    {                                   \
        ll n = size(v);                 \
        rep(i, n) cout << v[i] << endl; \
    }  // 一次元配列を出力する(改行あり)
#define vv_cout(v)                                         \
    {                                                      \
        ll n = size(v);                                    \
        rep(i, n) {                                        \
            rep(j, size(v[i])) { cout << v[i][j] << ' '; } \
            cout << endl;                                  \
        }                                                  \
    }  // 二次元配列を出力する
//----------------------------------------------
// pivot 候補 : [0, pivot_end)
template <typename T>
std::pair<int, T> GaussElimination(vector<vector<T>>& a, int pivot_end = -1,
                                   bool diagonalize = false) {
    if (a.empty()) return {0, 1};
    int H = a.size(), W = a[0].size(), rank = 0;
    if (pivot_end == -1) pivot_end = W;
    T det = 1;
    for (int j = 0; j < pivot_end; j++) {
        int idx = -1;
        for (int i = rank; i < H; i++) {
            if (a[i][j] != T(0)) {
                idx = i;
                break;
            }
        }
        if (idx == -1) {
            det = 0;
            continue;
        }
        if (rank != idx) det = -det, swap(a[rank], a[idx]);
        det *= a[rank][j];
        if (diagonalize && a[rank][j] != T(1)) {
            T coeff = T(1) / a[rank][j];
            for (int k = j; k < W; k++) a[rank][k] *= coeff;
        }
        int is = diagonalize ? 0 : rank + 1;
        for (int i = is; i < H; i++) {
            if (i == rank) continue;
            if (a[i][j] != T(0)) {
                T coeff = a[i][j] / a[rank][j];
                for (int k = j; k < W; k++) a[i][k] -= a[rank][k] * coeff;
            }
        }
        rank++;
    }
    return make_pair(rank, det);
}

template <typename mint>
vector<vector<mint>> inverse_matrix(const vector<vector<mint>>& a) {
    int N = a.size();
    assert(N > 0);
    assert(N == (int)a[0].size());

    vector<vector<mint>> m(N, vector<mint>(2 * N));
    for (int i = 0; i < N; i++) {
        copy(begin(a[i]), end(a[i]), begin(m[i]));
        m[i][N + i] = 1;
    }

    auto [rank, det] = GaussElimination(m, N, true);
    if (rank != N) return {};

    vector<vector<mint>> b(N);
    for (int i = 0; i < N; i++) {
        copy(begin(m[i]) + N, end(m[i]), back_inserter(b[i]));
    }
    return b;
}

template <class T>
struct Matrix {
    vector<vector<T>> A;

    Matrix() = default;
    Matrix(int n, int m) : A(n, vector<T>(m, T())) {}
    Matrix(int n) : A(n, vector<T>(n, T())) {};

    int H() const { return A.size(); }

    int W() const { return A[0].size(); }

    int size() const { return A.size(); }

    inline const vector<T>& operator[](int k) const { return A[k]; }

    inline vector<T>& operator[](int k) { return A[k]; }

    static Matrix I(int n) {
        Matrix mat(n);
        for (int i = 0; i < n; i++) mat[i][i] = 1;
        return (mat);
    }

    Matrix& operator+=(const Matrix& B) {
        int n = H(), m = W();
        assert(n == B.H() && m == B.W());
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
        return (*this);
    }

    Matrix& operator-=(const Matrix& B) {
        int n = H(), m = W();
        assert(n == B.H() && m == B.W());
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
        return (*this);
    }

    Matrix& operator*=(const Matrix& B) {
        int n = H(), m = B.W(), p = W();
        assert(p == B.H());
        vector<vector<T>> C(n, vector<T>(m, T{}));
        for (int i = 0; i < n; i++)
            for (int k = 0; k < p; k++)
                for (int j = 0; j < m; j++) C[i][j] += (*this)[i][k] * B[k][j];
        A.swap(C);
        return (*this);
    }

    Matrix& operator^=(long long k) {
        Matrix B = Matrix::I(H());
        while (k > 0) {
            if (k & 1) B *= *this;
            *this *= *this;
            k >>= 1LL;
        }
        A.swap(B.A);
        return (*this);
    }

    Matrix operator+(const Matrix& B) const { return (Matrix(*this) += B); }

    Matrix operator-(const Matrix& B) const { return (Matrix(*this) -= B); }

    Matrix operator*(const Matrix& B) const { return (Matrix(*this) *= B); }

    Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }

    bool operator==(const Matrix& B) const {
        assert(H() == B.H() && W() == B.W());
        for (int i = 0; i < H(); i++)
            for (int j = 0; j < W(); j++)
                if (A[i][j] != B[i][j]) return false;
        return true;
    }

    bool operator!=(const Matrix& B) const {
        assert(H() == B.H() && W() == B.W());
        for (int i = 0; i < H(); i++)
            for (int j = 0; j < W(); j++)
                if (A[i][j] != B[i][j]) return true;
        return false;
    }

    Matrix inverse() const {
        assert(H() == W());
        Matrix B(H());
        B.A = inverse_matrix(A);
        return B;
    }

    friend ostream& operator<<(ostream& os, const Matrix& p) {
        int n = p.H(), m = p.W();
        for (int i = 0; i < n; i++) {
            os << (i ? "   " : "") << "[";
            for (int j = 0; j < m; j++) {
                os << p[i][j] << (j + 1 == m ? "]\n" : ",");
            }
        }
        return (os);
    }

    T determinant() const {
        Matrix B(*this);
        assert(H() == W());
        T ret = 1;
        for (int i = 0; i < H(); i++) {
            int idx = -1;
            for (int j = i; j < W(); j++) {
                if (B[j][i] != 0) {
                    idx = j;
                    break;
                }
            }
            if (idx == -1) return 0;
            if (i != idx) {
                ret *= T(-1);
                swap(B[i], B[idx]);
            }
            ret *= B[i][i];
            T inv = T(1) / B[i][i];
            for (int j = 0; j < W(); j++) {
                B[i][j] *= inv;
            }
            for (int j = i + 1; j < H(); j++) {
                T a = B[j][i];
                if (a == 0) continue;
                for (int k = i; k < W(); k++) {
                    B[j][k] -= B[i][k] * a;
                }
            }
        }
        return ret;
    }
};

int main() {
    ll a, b, c, d, e, n;
    cin >> a >> b >> c >> d >> e >> n, n++;

    Matrix<static_modint<1000000007>> vec(1, 4), mat(4);

    vec[0] = {0, a, b, e};
    vector<vector<static_modint<1000000007>>> mat_v = {
        {1, 0, 0, 0}, {1, 0, d, 0}, {0, 1, c, 0}, {0, 0, 1, 1}};
    rep(i, 4) rep(j, 4) mat[i][j] = mat_v[i][j];

    mat ^= n;
    vec *= mat;

    cout << vec[0][0].val() << endl;
}
0