結果

問題 No.3310 mod998
コンテスト
ユーザー dyktr_06
提出日時 2025-10-24 22:45:00
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 98 ms / 2,000 ms
コード長 9,955 bytes
コンパイル時間 2,122 ms
コンパイル使用メモリ 203,368 KB
実行使用メモリ 7,720 KB
最終ジャッジ日時 2025-10-24 22:45:16
合計ジャッジ時間 6,814 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(n) for(int i = 0; i < (int)(n); ++i)
#define rep2(i, n) for(int i = 0; i < (int)(n); ++i)
#define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i)
#define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)

#define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i)
#define ALL(a) (a).begin(), (a).end()
#define Sort(a) (sort((a).begin(), (a).end()))
#define RSort(a) (sort((a).rbegin(), (a).rend()))
#define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end()))

using i64 = int64_t;
using i128 = __int128_t;

using ll = long long;
using ul = unsigned long long;
using ull = unsigned long long;
using ld = long double;
using vi = vector<int>;
using vll = vector<long long>;
using vull = vector<unsigned long long>;
using vc = vector<char>;
using vst = vector<string>;
using vd = vector<double>;
using vld = vector<long double>;
using P = pair<long long, long long>;

template<class T> long long sum(const T &a){ return accumulate(a.begin(), a.end(), 0LL); }
template<class T> auto min(const T &a){ return *min_element(a.begin(), a.end()); }
template<class T> auto max(const T &a){ return *max_element(a.begin(), a.end()); }

const long long MINF = 0x7fffffffffff;
const long long INF = 0x1fffffffffffffff;
const long long MOD = 998244353;
const long double EPS = 1e-9;
const long double PI = acos(-1);

template<class T> inline bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; }

template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return os; }
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; }
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " "; } return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; }
template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; }
template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; }
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os << pq.top() << " "; pq.pop(); } return os; }

template<class T, class U>
void inGraph(vector<vector<T>> &G, U n, U m, bool directed = true, bool zero_index = true){
    G.resize(n);
    for(int i = 0; i < m; i++){
        int a, b;
        cin >> a >> b;
        if(!zero_index) a--, b--;
        G[a].push_back(b);
        if(!directed) G[b].push_back(a);
    }
}

template <typename T>
long long binary_search(long long ok, long long ng, T check){
    while(abs(ok - ng) > 1){
        long long mid = (ok + ng) / 2;
        if(check(mid)) ok = mid;
        else ng = mid;
    }
    return ok;
}

template <typename T>
long double binary_search_real(long double ok, long double ng, T check, int iter = 100){
    for(int i = 0; i < iter; ++i){
        long double mid = (ok + ng) / 2;
        if(check(mid)) ok = mid;
        else ng = mid;
    }
    return ok;
}

long long trisum(long long a, long long b){
    if(a > b) return 0;
    long long res = ((b - a + 1) * (a + b)) / 2;
    return res;
}

template <typename T>
T intpow(T x, int n){
    T ret = 1;
    while(n > 0) {
        if(n & 1) (ret *= x);
        (x *= x);
        n >>= 1;
    }
    return ret;
}

template <typename T>
T getDivision(T a, T b){
    if(b == 0) return -1;
    if(a >= 0 && b > 0){
        return a / b;
    } else if(a < 0 && b > 0){
        return a / b - (a % b != 0);
    } else if(a >= 0 && b < 0){
        return a / b;
    } else{
        return a / b + (a % b != 0);
    }
}

template <typename T>
T getReminder(T a, T b){
    if(b == 0) return -1;
    if(a >= 0 && b > 0){
        return a % b;
    } else if(a < 0 && b > 0){
        return ((a % b) + b) % b;
    } else if(a >= 0 && b < 0){
        return a % b;
    } else{
        return (abs(b) - abs(a % b)) % b;
    }
}

template<class T, class U> inline T vin(T &vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; }
template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; }
template<class... T> void in(T&... a){ (cin >> ... >> a); }
void out(){ cout << '\n'; }
template<class T, class... Ts> void out(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
void fout(){ cout << endl; }
template<class T, class... Ts> void fout(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << endl; }
void debug(){ cerr << '\n'; }
template<class T, class... Ts> void debug(const T &a, const Ts&... b){ cerr << a; (cerr << ... << (cerr << ' ', b)); cerr << '\n'; }

namespace modcalc{
    using i64 = long long;

    i64 modpow(i64 x, i64 n, const i64 &m){
        i64 ret = 1 % m;
        x %= m;
        while(n > 0){
            if(n & 1) (ret *= x) %= m;
            (x *= x) %= m;
            n >>= 1;
        }
        return ret;
    }

    i64 modinv(i64 a, const i64 m){
        i64 b = m, u = 1, v = 0;
        while(b){
            i64 t = a / b;
            a -= t * b; std::swap(a, b);
            u -= t * v; std::swap(u, v);
        }
        u %= m;
        if(u < 0) u += m;
        return u;
    }

    i64 modarithmeticsum(i64 a, i64 d, i64 n, const i64 m){
        i64 m2 = m * 2;
        a %= m2, n %= m2, d %= m2;
        i64 b = (n + m2 - 1) * d % m2;
        return ((n * (a * 2 + b) % m2) / 2) % m;
    }

    i64 modgeometricsum(i64 a, i64 r, i64 n, const i64 m){
        a %= m;
        if(r == 1){
            n %= m;
            return a * n % m;
        }
        return a * (modpow(r, n, m) + m - 1) % m * modinv(r - 1, m) % m;
    }

    i64 modgeometricsum2(i64 a, i64 r, i64 n, const i64 m){
        a %= m;
        if(r == 1){
            n %= m;
            return a * n % m;
        }
        i64 ret = 0;
        i64 x = 1 % m;
        i64 sum = 0;
        for(int i = 0; n > 0; ++i){
            if(n & 1){
                (ret += x * modpow(r, sum, m) % m) %= m;
                sum |= 1LL << i;
            }
            (x += x * modpow(r, 1LL << i, m) % m) %= m;
            n >>= 1;
        }
        return a * ret % m;
    }

    // https://37zigen.com/tonelli-shanks-algorithm/
    i64 modsqrt(i64 a, const i64 p){
        a %= p;
        if(a <= 1) return a;
        // オイラーの規準
        if(modpow(a, (p - 1) / 2, p) != 1) return -1;
        i64 b = 1;
        while(modpow(b, (p - 1) / 2, p) == 1) b++;
        // p - 1 = m 2^e
        i64 m = p - 1, e = 0;
        while(m % 2 == 0) m >>= 1, e++;
        // x = a^((m + 1) / 2) (mod p)
        i64 x = modpow(a, (m - 1) / 2, p);
        // y = a^{-1} x^2 (mod p)
        i64 y = a * x % p * x % p;
        (x *= a) %= p;
        i64 z = modpow(b, m, p);
        while(y != 1){
            i64 j = 0, t = y;
            while(t != 1){
                (t *= t) %= p;
                j++;
            }
            // e - j ビット目が 1
            z = modpow(z, 1LL << (e - j - 1), p);
            (x *= z) %= p;
            (z *= z) %= p;
            (y *= z) %= p;
            e = j;
        }
        return x;
    }
}

ll T;

void input(){
    in(T);
}

void solve(){
    ll n, m; in(n, m);
    vst k(m); in(k);

    const ll mod = 998;
    vll cnt(mod, -1), cost(mod);
    ll f = -1, looplen = -1, loopcost = -1, s = -1;

    ll cur = 1;
    cnt[1] = 0, cost[1] = 1;
    rep(i, mod){
        // out(i, cur);
        ll nxt = cur * n % mod;
        if(cnt[nxt] != -1){
            f = cnt[nxt];
            s = nxt;
            looplen = cnt[cur] - cnt[nxt] + 1;
            loopcost = (cost[cur] - cost[nxt] + nxt) % mod;
            break;
        }
        cnt[nxt] = cnt[cur] + 1;
        cost[nxt] = (cost[cur] + nxt) % mod;
        cur = nxt;
    }
    rep(i, m){
        if(k[i].size() < 10){
            out(modcalc::modgeometricsum2(1LL, n, stoll(k[i]) + 1, 998));
        }else{
            // out(s, f, looplen, loopcost);
            ll c = 0;
            for(auto x : k[i]){
                c *= 10;
                c += (x - '0');
                c %= mod * looplen;
            }
            c += 1;
            c -= f; c %= mod * looplen;
            if(c < 0) c += mod * looplen;
            ll ans = cost[s] - s;
            ans += (c / looplen) * loopcost;
            ll r = c % looplen;

            ll cur2 = s;
            rep(j, r){
                ans += cur2;
                cur2 = (cur2 * n) % mod;
            }
            out(ans % mod);
        }
    }
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(20);

    T = 1;
    input();
    while(T--) solve();
}
0