結果
| 問題 |
No.3041 非対称じゃんけん
|
| コンテスト | |
| ユーザー |
applejam
|
| 提出日時 | 2025-11-01 22:04:28 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,881 bytes |
| コンパイル時間 | 6,470 ms |
| コンパイル使用メモリ | 334,192 KB |
| 実行使用メモリ | 7,720 KB |
| 最終ジャッジ日時 | 2025-11-01 22:04:39 |
| 合計ジャッジ時間 | 10,704 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 4 WA * 26 |
ソースコード
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
using ll = long long;
using mint = modint998244353;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vll = vector<ll>;
using vvll = vector<vll>;
using vvvll = vector<vvll>;
using vmi = vector<mint>;
using vvmi = vector<vmi>;
using vvvmi = vector<vvmi>;
#define all(a) (a).begin(), (a).end()
#define rep2(i, m, n) for (int i = (m); i < (n); ++i)
#define rep(i, n) rep2(i, 0, n)
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
template<class T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto &e : res) e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this) e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
int n = (*this).size(), m = g.size();
rep(i, min(n, m)) (*this)[i] += g[i];
return *this;
}
F &operator-=(const F &g) {
int n = (*this).size(), m = g.size();
rep(i, min(n, m)) (*this)[i] -= g[i];
return *this;
}
F &operator<<=(const int d) {
int n = (*this).size();
(*this).insert((*this).begin(), d, 0);
(*this).resize(n);
return *this;
}
F &operator>>=(const int d) {
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
(*this).resize(n);
return *this;
}
F inv(int d = -1) const {
int n = (*this).size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d > 0);
F res{(*this)[0].inv()};
while (res.size() < d) {
int m = size(res);
F f(begin(*this), begin(*this) + min(n, 2*m));
F r(res);
f.resize(2*m), internal::butterfly(f);
r.resize(2*m), internal::butterfly(r);
rep(i, 2*m) f[i] *= r[i];
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2*m), internal::butterfly(f);
rep(i, 2*m) f[i] *= r[i];
internal::butterfly_inv(f);
T iz = T(2*m).inv(); iz *= -iz;
rep(i, m) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
return {res.begin(), res.begin() + d};
}
// // fast: FMT-friendly modulus only
F &operator*=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g);
(*this).resize(n);
return *this;
}
F &operator/=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g.inv(n));
(*this).resize(n);
return *this;
}
// // naive
// F &operator*=(const F &g) {
// int n = (*this).size(), m = g.size();
// drep(i, n) {
// (*this)[i] *= g[0];
// rep2(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j];
// }
// return *this;
// }
// F &operator/=(const F &g) {
// assert(g[0] != T(0));
// T ig0 = g[0].inv();
// int n = (*this).size(), m = g.size();
// rep(i, n) {
// rep2(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j];
// (*this)[i] *= ig0;
// }
// return *this;
// }
// sparse
F &operator*=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
drep(i, n) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i-j] * b;
}
}
return *this;
}
F &operator/=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
rep(i, n) {
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i-j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
// multiply and divide (1 + cz^d)
void multiply(const int d, const T c) {
int n = (*this).size();
if (c == T(1)) drep(i, n-d) (*this)[i+d] += (*this)[i];
else if (c == T(-1)) drep(i, n-d) (*this)[i+d] -= (*this)[i];
else drep(i, n-d) (*this)[i+d] += (*this)[i] * c;
}
void divide(const int d, const T c) {
int n = (*this).size();
if (c == T(1)) rep(i, n-d) (*this)[i+d] -= (*this)[i];
else if (c == T(-1)) rep(i, n-d) (*this)[i+d] += (*this)[i];
else rep(i, n-d) (*this)[i+d] -= (*this)[i] * c;
}
T eval(const T &a) const {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; }
F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; }
};
using fps = FormalPowerSeries<mint>;
using sfps = vector<pair<int, mint>>;
int main(){
int n, F; cin >> n >> F;
vvi v(3, vi(n)); rep(i, 3)rep(j, n)cin >> v[i][j];
fps f;
f.resize(3*F+1);
rep(i, n){
if(i == 0){
rep(j, 3)f[v[j][i]] = 1;
}else{
fps g; g.resize(3*F+1);
rep(j, 3)g[v[j][i]] = 1;
f *= g;
}
int ans = 0;
rep(i, 3*F+1){
if(f[i].val() > 0){
ans++;
f[i] = 1;
}
}
cout << ans << endl;
}
return 0;
}
applejam