結果
| 問題 | No.3331 Consecutive Cubic Sum |
| コンテスト | |
| ユーザー |
Tatsu_mr
|
| 提出日時 | 2025-11-02 21:42:27 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 24 ms / 5,000 ms |
| コード長 | 5,860 bytes |
| 記録 | |
| コンパイル時間 | 3,415 ms |
| コンパイル使用メモリ | 296,372 KB |
| 実行使用メモリ | 7,720 KB |
| 最終ジャッジ日時 | 2025-11-02 21:42:33 |
| 合計ジャッジ時間 | 5,031 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 47 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define For(i, a, b) for(int i = (a); i < (b); i++)
#define rep(i, n) For(i, 0, n)
#define rFor(i, a, b) for(int i = (a); i >= (b); i--)
#define ALL(v) (v).begin(), (v).end()
#define rALL(v) (v).rbegin(), (v).rend()
#define SZ(v) ((int)(v).size())
using lint = long long;
using ld = long double;
const int INF = 2000000000;
const lint LINF = 1000000000000000000;
// 真上から反時計回り
const int di[] = {-1, 0, 1, 0};
const int dj[] = {0, -1, 0, 1};
const int di8[] = {-1, -1, 0, 1, 1, 1, 0, -1};
const int dj8[] = {0, -1, -1, -1, 0, 1, 1, 1};
struct SetupIo {
SetupIo() {
ios::sync_with_stdio(false); cin.tie(nullptr);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(15);
}
} setupio;
namespace tatsumr {
template <class T>
bool chmin(T &a, const T &b) {
return a > b ? a = b, 1 : 0;
}
template <class T>
bool chmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
}
template <class T>
T mypow(T a, T b) {
T res = 1;
while (b) {
if (b & 1) { res *= a; }
a *= a; b >>= 1;
}
return res;
}
template <class T>
T modpow(T a, T b, T mod) {
T res = 1;
while (b) {
if (b & 1) { res = (res * a) % mod; }
a = (a * a) % mod; b >>= 1;
}
return res;
}
} // namespace tatsumr
using namespace tatsumr;
namespace fastprime {
template <class T>
T modpow(T a, T b, T mod) {
T cur = a % mod, res = 1 % mod;
while (b) {
if (b & 1) {
res = (res * cur) % mod;
}
cur = (cur * cur) % mod;
b >>= 1;
}
return res;
}
bool MillerRabin(long long n) {
if (n <= 1) {
return false;
}
if (n == 2 || n == 7 || n == 61) {
return true;
}
if (n % 2 == 0) {
return false;
}
vector<long long> A;
if (n < 4759123141) {
A = {2, 7, 61};
} else {
A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
}
long long s = 0, d = n - 1;
while (d % 2 == 0) {
s++;
d >>= 1;
}
for (auto a : A) {
if (a % n == 0) {
return true;
}
long long x = modpow<__int128_t>(a, d, n);
if (x == 1) {
continue;
}
bool ok = false;
for (int i = 0; i < s; i++) {
if (x == n - 1) {
ok = true;
break;
}
x = (__int128_t)x * x % n;
}
if (!ok) {
return false;
}
}
return true;
}
long long gcd(long long x, long long y) {
if (y == 0) {
return x;
}
return gcd(y, x % y);
}
unsigned int xorshift() {
static unsigned int x = 123456789, y = 362436069, z = 521288629, w = 88675123;
unsigned int t = (x ^ (x << 11));
x = y;
y = z;
z = w;
return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)));
}
long long Pollard(long long n) {
if (n % 2 == 0) {
return 2LL;
}
if (MillerRabin(n)) {
return n;
}
long long i = 0;
while (true) {
i++;
long long r = xorshift();
auto f = [&](long long x) {
return (__int128_t(x) * x + r) % n;
};
long long x = i, y = f(x);
while (true) {
long long p = gcd(abs(y - x + n), n);
if (p == 0 || p == n) {
break;
}
if (p != 1) {
return p;
}
x = f(x);
y = f(f(y));
}
}
}
vector<long long> prime_factorize(long long n) {
if (n == 1) {
return {};
}
long long p = Pollard(n);
if (p == n) {
return {p};
}
vector<long long> l = prime_factorize(p);
vector<long long> r = prime_factorize(n / p);
for (auto x : r) {
l.emplace_back(x);
}
sort(l.begin(), l.end());
return l;
}
vector<long long> divisors(long long n) {
if (n == 1) {
return {1LL};
}
auto divisor_dfs = [&](auto divisor_dfs, vector<pair<long long, long long>> &p, long long t, int cur, vector<long long> &res) -> void {
if (cur == p.size()) {
res.emplace_back(t);
return;
}
divisor_dfs(divisor_dfs, p, t, cur + 1, res);
for (int i = 0; i < p[cur].second; i++) {
t *= p[cur].first;
divisor_dfs(divisor_dfs, p, t, cur + 1, res);
}
};
vector<long long> res, pf = prime_factorize(n);
vector<pair<long long, long long>> p;
long long cnt = 1, now = pf[0];
for (int i = 1; i < (int)pf.size(); i++) {
if (pf[i] == now) {
cnt++;
} else {
p.emplace_back(now, cnt);
now = pf[i];
cnt = 1;
}
}
p.emplace_back(now, cnt);
divisor_dfs(divisor_dfs, p, 1, 0, res);
sort(res.begin(), res.end());
return res;
}
} // namespace fastprime
using namespace fastprime;
// y*(y+1) = x なる y, なければ -1
lint f(lint x) {
lint sq = sqrt(x);
for (lint y = sq - 2; y <= sq + 2; y++) {
if (y >= 0 && y * (y + 1) == x) {
return y;
}
}
return -1;
}
int main() {
lint N;
cin >> N;
lint M = N * 4;
vector<pair<lint, lint>> ans;
auto ds = divisors(M);
for (lint a : ds) {
lint b = M / a;
if (a > b) {
break;
}
if ((a % 2) != (b % 2)) {
continue;
}
lint x = (b + a) / 2LL; // R(R+1)
lint y = (b - a) / 2LL; // (L-1)L
lint r = f(x), l = f(y) + 1;
if (l >= 1 && r >= 1) {
ans.emplace_back(l, r);
}
}
sort(ALL(ans));
ans.erase(unique(ALL(ans)), ans.end());
cout << SZ(ans) << "\n";
for (auto [l, r] : ans) {
cout << l << " " << r << "\n";
}
}
Tatsu_mr