結果
| 問題 |
No.3333 Consecutive Power Sum (Large)
|
| コンテスト | |
| ユーザー |
maspy
|
| 提出日時 | 2025-11-02 22:42:13 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 8,680 ms / 10,000 ms |
| コード長 | 4,176 bytes |
| コンパイル時間 | 285 ms |
| コンパイル使用メモリ | 82,416 KB |
| 実行使用メモリ | 230,424 KB |
| 最終ジャッジ日時 | 2025-11-02 22:44:00 |
| 合計ジャッジ時間 | 105,893 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 63 |
ソースコード
"""
sample で WA が出ているが手元で再現してない
yandexcup があるのでここで終わりで
"""
def gcd(a, b):
while a:
a, b = b % a, a
return b
def is_prime(n):
if n == 2:
return 1
if n == 1 or n % 2 == 0:
return 0
m = n - 1
lsb = m & -m
s = lsb.bit_length()-1
d = m // lsb
test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]
for a in test_numbers:
if a == n:
continue
x = pow(a, d, n)
r = 0
if x == 1:
continue
while x != m:
x = pow(x, 2, n)
r += 1
if x == 1 or r == s:
return 0
return 1
def find_prime_factor(n):
if n % 2 == 0:
return 2
m = int(n**0.125)+1
for c in range(1, n):
def f(a): return (pow(a, 2, n)+c) % n
y = 0
g = q = r = 1
k = 0
while g == 1:
x = y
while k < 3*r//4:
y = f(y)
k += 1
while k < r and g == 1:
ys = y
for _ in range(min(m, r-k)):
y = f(y)
q = q*abs(x-y) % n
g = gcd(q, n)
k += m
k = r
r *= 2
if g == n:
g = 1
y = ys
while g == 1:
y = f(y)
g = gcd(abs(x-y), n)
if g == n:
continue
if is_prime(g):
return g
elif is_prime(n//g):
return n//g
else:
return find_prime_factor(g)
def factorize(n):
res = {}
while not is_prime(n) and n > 1: # nが合成数である間nの素因数の探索を繰り返す
p = find_prime_factor(n)
s = 0
while n % p == 0: # nが素因数pで割れる間割り続け、出力に追加
n //= p
s += 1
res[p] = s
if n > 1: # n>1であればnは素数なので出力に追加
res[n] = 1
return res
ANS = []
"""
E=1 を解く
流石に約数列挙は必要になる
E=1 の解法から E=3 の解は作れている
E=2 も約数列挙を使う
"""
N = int(input())
# divs = sympy.ntheory.divisors(2 * N)
pfs = factorize(N)
if 2 not in pfs:
pfs[2] = 0
if 3 not in pfs:
pfs[3] = 0
def get_divs(pfs):
n = 1
for p, e in pfs.items():
n *= e + 1
divs = [1] * n
n = 1
for p, e in pfs.items():
add = n * e
for i in range(add):
divs[n+i] = divs[i]*p
n += add
return divs
pfs[2] += 1
for d in get_divs(pfs):
# E = 1
b = d
a = (2*N)//b
if a <= b and (a + b) % 2 == 1:
R = (a+b-1) // 2
L = (b-a+1) // 2
ANS.append((1, L, R))
pfs[2] -= 1
# E=2
# 項数が 6N の約数
pfs[2] += 1
pfs[3] += 1
N6 = N * 6
for d in get_divs(pfs):
a = 6
b = 6 * d + 6
c = 2 * d * d + 3 * d + 1 - (N6 // d)
D = b * b - 4 * a * c
if D < 0:
continue
# 精度心配だったっけ
sq = int(D ** .5)
if sq * sq != D:
continue
if (sq-b) % 12 != 0:
continue
x = (-b+sq)//12
if 0 <= x:
L = x+1
R = x+d
ANS.append((2, L, R))
# print(a, b, c, sq)
pfs[2] -= 1
pfs[3] -= 1
def f(S):
# n(n+1)/2==S
X = 8 * S + 1
x = int(X**.5)
if x*x != X:
return -1
# 2n+1==x
return (x-1)//2
# E=3
for d in get_divs(pfs):
a = d
b = N//d
if a > b or (a+b) % 2 != 0:
continue
SR = (a+b)//2
SL = (b-a)//2
R = f(SR)
L = f(SL)
if L != -1 and R != -1:
ANS.append((3, L+1, R))
# E は 4 以上です
for E in range(4, 80):
S = 0
R = 0
for L in range(1, 10_000_000):
while 1:
x = R ** E
if S + x > N:
break
R += 1
S += x
if L == R:
break
if S == N:
ANS.append((E, L, R - 1))
x = L
for _ in range(E - 1):
x *= L
S -= x
ANS.sort()
print(len(ANS))
for a, b, c in ANS:
print(a, b, c)
maspy