結果
| 問題 | No.3376 Rectangle in Circle |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-11-30 17:35:43 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 145 ms / 2,000 ms |
| コード長 | 5,782 bytes |
| 記録 | |
| コンパイル時間 | 11,148 ms |
| コンパイル使用メモリ | 400,660 KB |
| 実行使用メモリ | 8,220 KB |
| 最終ジャッジ日時 | 2025-11-30 17:36:01 |
| 合計ジャッジ時間 | 15,886 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 20 |
ソースコード
fn getline() -> String {
let mut ret = String::new();
std::io::stdin().read_line(&mut ret).unwrap();
ret
}
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod> Default for ModInt<M> {
fn default() -> Self { Self::new_internal(0) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
fn calc(n: usize, diam: usize) -> MInt {
if diam <= 1 {
let mut sum = MInt::new(0);
for i in 1..=n {
sum += MInt::new(i as i64).inv();
}
return sum * n as i64
}
let mut dp = vec![vec![MInt::new(0); diam + 1]; 3];
for i in (0..2).rev() {
for j in (0..diam + 1).rev() {
if j + 2 * i > 2 * diam {
continue;
}
let mut me = MInt::new(1);
if j > 0 {
me += MInt::new((2 * diam) as i64).inv() * j as i64 * dp[i + 1][j - 1];
}
if j + i < diam {
me += MInt::new((2 * diam) as i64).inv() * 2 * (diam - j - i) as i64 * dp[i][j + 1];
}
let f = MInt::new((2 * diam) as i64) * MInt::new((2 * diam - j - 2 * i) as i64).inv();
dp[i][j] = me * f;
}
}
dp[0][0] * MInt::new(n as i64) * MInt::new((2 * diam) as i64).inv()
}
// https://yukicoder.me/problems/no/3376 (3)
// solved with hints
fn main() {
let t = getline().trim().parse::<i32>().unwrap();
for _ in 0..t {
let ints = getline().trim().split_whitespace()
.map(|x| x.parse::<i64>().unwrap())
.collect::<Vec<_>>();
let l = ints[1];
let a = getline().trim().split_whitespace()
.map(|x| x.parse::<i64>().unwrap())
.collect::<Vec<_>>();
let n = a.len();
let mut hs = std::collections::HashSet::new();
for &a in &a {
hs.insert(2 * a);
}
let mut diam = 0;
for &a in &a {
if hs.contains(&(2 * a + l)) {
diam += 1;
}
}
println!("{}", calc(n, diam));
// eprintln!("{:?}", calc(n, diam));
}
}