結果

問題 No.3405 Engineering University of Tree
コンテスト
ユーザー seekworser
提出日時 2025-12-01 08:09:42
言語 Nim
(2.2.0)
結果
WA  
実行時間 -
コード長 29,237 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 6,400 ms
コンパイル使用メモリ 101,472 KB
実行使用メモリ 142,908 KB
最終ジャッジ日時 2025-12-11 23:30:59
合計ジャッジ時間 19,777 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 16 WA * 5
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2])
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/tmpl/citrus.nim
ImportExpand "cplib/tmpl/citrus" <=== "when not declared CPLIB_TMPL_CITRUS:\n    const CPLIB_TMPL_CITRUS* = 1\n    {.warning[UnusedImport]: off.}\n    {.hint[XDeclaredButNotUsed]: off.}\n    import os\n    import algorithm\n    import sequtils\n    import tables\n    import macros\n    import std/math\n    import sets\n    import strutils\n    import strformat\n    import sugar\n    import streams\n    import deques\n    import bitops\n    import heapqueue\n    import options\n    import hashes\n    const MODINT998244353* = 998244353\n    const MODINT1000000007* = 1000000007\n    when not declared CPLIB_UTILS_CONSTANTS:\n        const CPLIB_UTILS_CONSTANTS* = 1\n        const INF32*: int32 = 1001000027.int32\n        const INF64*: int = int(3300300300300300491)\n    \n    const INFL = INF64\n    type double* = float64\n    let readNext = iterator(getsChar: bool = false): string {.closure.} =\n        while true:\n            var si: string\n            try: si = stdin.readLine\n            except EOFError: yield \"\"\n            for s in si.split:\n                if getsChar:\n                    for i in 0..<s.len():\n                        yield s[i..i]\n                else:\n                    if s.isEmptyOrWhitespace: continue\n                    yield s\n    proc input*(t: typedesc[string]): string = readNext()\n    proc input*(t: typedesc[char]): char = readNext(true)[0]\n    proc input*(t: typedesc[int]): int = readNext().parseInt\n    proc input*(t: typedesc[float]): float = readNext().parseFloat\n    macro input*(t: typedesc, n: varargs[int]): untyped =\n        var repStr = \"\"\n        for arg in n:\n            repStr &= &\"({arg.repr}).newSeqWith \"\n        parseExpr(&\"{repStr}input({t})\")\n    macro input*(ts: varargs[auto]): untyped =\n        var tupStr = \"\"\n        for t in ts:\n            tupStr &= &\"input({t.repr}),\"\n        parseExpr(&\"({tupStr})\")\n    macro input*(n: int, ts: varargs[auto]): untyped =\n        for typ in ts:\n            if typ.typeKind != ntyAnything:\n                error(\"Expected typedesc, got \" & typ.repr, typ)\n        parseExpr(&\"({n.repr}).newSeqWith input({ts.repr})\")\n    proc `fmtprint`*(x: int or string or char or bool): string = return $x\n    proc `fmtprint`*(x: float or float32 or float64): string = return &\"{x:.16f}\"\n    proc `fmtprint`*[T](x: seq[T] or Deque[T] or HashSet[T] or set[T]): string = return x.toSeq.join(\" \")\n    proc `fmtprint`*[T, N](x: array[T, N]): string = return x.toSeq.join(\" \")\n    proc `fmtprint`*[T](x: HeapQueue[T]): string =\n        var q = x\n        while q.len != 0:\n            result &= &\"{q.pop()}\"\n            if q.len != 0: result &= \" \"\n    proc `fmtprint`*[T](x: CountTable[T]): string =\n        result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n    proc `fmtprint`*[K, V](x: Table[K, V]): string =\n        result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n    proc print*(prop: tuple[f: File, sepc: string, endc: string, flush: bool], args: varargs[string, `fmtprint`]) =\n        for i in 0..<len(args):\n            prop.f.write(&\"{args[i]}\")\n            if i != len(args) - 1: prop.f.write(prop.sepc) else: prop.f.write(prop.endc)\n        if prop.flush: prop.f.flushFile()\n    proc print*(args: varargs[string, `fmtprint`]) = print((f: stdout, sepc: \" \", endc: \"\\n\", flush: false), args)\n    const LOCAL_DEBUG{.booldefine.} = false\n    macro getSymbolName(x: typed): string = x.toStrLit\n    macro debug*(args: varargs[untyped]): untyped =\n        when LOCAL_DEBUG:\n            result = newNimNode(nnkStmtList, args)\n            template prop(e: string = \"\"): untyped = (f: stderr, sepc: \"\", endc: e, flush: true)\n            for i, arg in args:\n                if arg.kind == nnkStrLit:\n                    result.add(quote do: print(prop(), \"\\\"\", `arg`, \"\\\"\"))\n                else:\n                    result.add(quote do: print(prop(\": \"), getSymbolName(`arg`)))\n                    result.add(quote do: print(prop(), `arg`))\n                if i != args.len - 1: result.add(quote do: print(prop(), \", \"))\n                else: result.add(quote do: print(prop(), \"\\n\"))\n        else:\n            return (quote do: discard)\n    proc `%`*(x: SomeInteger, y: SomeInteger): int =\n        result = x mod y\n        if y > 0 and result < 0: result += y\n        if y < 0 and result > 0: result += y\n    proc `//`*(x: SomeInteger, y: SomeInteger): int =\n        result = x div y\n        if y > 0 and result * y > x: result -= 1\n        if y < 0 and result * y < x: result -= 1\n    proc `^`*(x: SomeInteger, y: SomeInteger): int = x xor y\n    proc `&`*(x: SomeInteger, y: SomeInteger): int = x and y\n    proc `|`*(x: SomeInteger, y: SomeInteger): int = x or y\n    proc `>>`*(x: SomeInteger, y: SomeInteger): int = x shr y\n    proc `<<`*(x: SomeInteger, y: SomeInteger): int = x shl y\n    proc `%=`*(x: var SomeInteger, y: SomeInteger): void = x = x % y\n    proc `//=`*(x: var SomeInteger, y: SomeInteger): void = x = x // y\n    proc `^=`*(x: var SomeInteger, y: SomeInteger): void = x = x ^ y\n    proc `&=`*(x: var SomeInteger, y: SomeInteger): void = x = x & y\n    proc `|=`*(x: var SomeInteger, y: SomeInteger): void = x = x | y\n    proc `>>=`*(x: var SomeInteger, y: SomeInteger): void = x = x >> y\n    proc `<<=`*(x: var SomeInteger, y: SomeInteger): void = x = x << y\n    proc `[]`*(x, n: int): bool = (x and (1 shl n)) != 0\n    proc `[]=`*(x: var int, n: int, i: bool) =\n        if i: x = x or (1 << n)\n        else: (if x[n]: x = x xor (1 << n))\n    proc pow*(a, n: int, m = INF64): int =\n        var\n            rev = 1\n            a = a\n            n = n\n        while n > 0:\n            if n % 2 != 0: rev = (rev * a) mod m\n            if n > 1: a = (a * a) mod m\n            n >>= 1\n        return rev\n    when not declared CPLIB_MATH_ISQRT:\n        const CPLIB_MATH_ISQRT* = 1\n        proc isqrt*(n: int): int =\n            var x = n\n            var y = (x + 1) shr 1\n            while y < x:\n                x = y\n                y = (x + n div x) shr 1\n            return x\n    \n    proc chmax*[T](x: var T, y: T): bool {.discardable.} = (if x < y: (x = y; return true; ) return false)\n    proc chmin*[T](x: var T, y: T): bool {.discardable.} = (if x > y: (x = y; return true; ) return false)\n    proc `max=`*[T](x: var T, y: T) = x = max(x, y)\n    proc `min=`*[T](x: var T, y: T) = x = min(x, y)\n    proc at*(x: char, a = '0'): int = int(x) - int(a)\n    proc Yes*(b: bool = true): void = print(if b: \"Yes\" else: \"No\")\n    proc No*(b: bool = true): void = Yes(not b)\n    proc YES_upper*(b: bool = true): void = print(if b: \"YES\" else: \"NO\")\n    proc NO_upper*(b: bool = true): void = Yes_upper(not b)\n    const DXY* = [(0, -1), (0, 1), (-1, 0), (1, 0)]\n    const DDXY* = [(1, -1), (1, 0), (1, 1), (0, -1), (0, 1), (-1, -1), (-1, 0), (-1, 1)]\n    macro exit*(statement: untyped): untyped = (quote do: (`statement`; quit()))\n    proc initHashSet[T](): Hashset[T] = initHashSet[T](0)\n"
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/graph/graph.nim
ImportExpand "cplib/graph/graph" <=== "when not declared CPLIB_GRAPH_GRAPH:\n    const CPLIB_GRAPH_GRAPH* = 1\n\n    import sequtils\n    import math\n    type DynamicGraph*[T] = ref object of RootObj\n        edges*: seq[seq[(int32, T)]]\n        len*: int\n    type StaticGraph*[T] = ref object of RootObj\n        src*, dst*: seq[int32]\n        cost*: seq[T]\n        elist*: seq[(int32, T)]\n        start*: seq[int32]\n        len*: int\n\n    type WeightedDirectedGraph*[T] = ref object of DynamicGraph[T]\n    type WeightedUnDirectedGraph*[T] = ref object of DynamicGraph[T]\n    type UnWeightedDirectedGraph* = ref object of DynamicGraph[int]\n    type UnWeightedUnDirectedGraph* = ref object of DynamicGraph[int]\n    type WeightedDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n    type WeightedUnDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n    type UnWeightedDirectedStaticGraph* = ref object of StaticGraph[int]\n    type UnWeightedUnDirectedStaticGraph* = ref object of StaticGraph[int]\n\n    type GraphTypes*[T] = DynamicGraph[T] or StaticGraph[T]\n    type DirectedGraph* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph\n    type UnDirectedGraph* = WeightedUnDirectedGraph or UnWeightedUnDirectedGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n    type WeightedGraph*[T] = WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T] or WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T]\n    type UnWeightedGraph* = UnWeightedDirectedGraph or UnWeightedUnDirectedGraph or UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n    type DynamicGraphTypes* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedUnDirectedGraph\n    type StaticGraphTypes* = WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n\n    proc add_edge_dynamic_impl*[T](g: DynamicGraph[T], u, v: int, cost: T, directed: bool) =\n        g.edges[u].add((v.int32, cost))\n        if not directed: g.edges[v].add((u.int32, cost))\n\n    proc initWeightedDirectedGraph*(N: int, edgetype: typedesc = int): WeightedDirectedGraph[edgetype] =\n        result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n    proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =\n        g.add_edge_dynamic_impl(u, v, cost, true)\n\n    proc initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =\n        result = WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n    proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v: int, cost: T) =\n        g.add_edge_dynamic_impl(u, v, cost, false)\n\n    proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph =\n        result = UnWeightedDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n    proc add_edge*(g: var UnWeightedDirectedGraph, u, v: int) =\n        g.add_edge_dynamic_impl(u, v, 1, true)\n\n    proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =\n        result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n    proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int) =\n        g.add_edge_dynamic_impl(u, v, 1, false)\n\n    proc len*[T](G: WeightedGraph[T]): int = G.len\n    proc len*(G: UnWeightedGraph): int = G.len\n\n    iterator `[]`*[T](g: WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T], x: int): (int, T) =\n        for e in g.edges[x]: yield (e[0].int, e[1])\n    iterator `[]`*(g: UnWeightedDirectedGraph or UnWeightedUnDirectedGraph, x: int): int =\n        for e in g.edges[x]: yield e[0].int\n\n    proc add_edge_static_impl*[T](g: StaticGraph[T], u, v: int, cost: T, directed: bool) =\n        g.src.add(u.int32)\n        g.dst.add(v.int32)\n        g.cost.add(cost)\n        if not directed:\n            g.src.add(v.int32)\n            g.dst.add(u.int32)\n            g.cost.add(cost)\n\n    proc build_impl*[T](g: StaticGraph[T]) =\n        g.start = newSeqWith(g.len + 1, 0.int32)\n        for i in 0..<g.src.len:\n            g.start[g.src[i]] += 1\n        g.start.cumsum\n        g.elist = newSeq[(int32, T)](g.start[^1])\n        for i in countdown(g.src.len - 1, 0):\n            var u = g.src[i]\n            var v = g.dst[i]\n            g.start[u] -= 1\n            g.elist[g.start[u]] = (v, g.cost[i])\n    proc build*(g: StaticGraphTypes) = g.build_impl()\n\n    proc initWeightedDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedDirectedStaticGraph[edgetype] =\n        result = WeightedDirectedStaticGraph[edgetype](\n            src: newSeqOfCap[int32](capacity),\n            dst: newSeqOfCap[int32](capacity),\n            cost: newSeqOfCap[edgetype](capacity),\n            elist: newSeq[(int32, edgetype)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*[T](g: var WeightedDirectedStaticGraph[T], u, v: int, cost: T) =\n        g.add_edge_static_impl(u, v, cost, true)\n\n    proc initWeightedUnDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedUnDirectedStaticGraph[edgetype] =\n        result = WeightedUnDirectedStaticGraph[edgetype](\n            src: newSeqOfCap[int32](capacity*2),\n            dst: newSeqOfCap[int32](capacity*2),\n            cost: newSeqOfCap[edgetype](capacity*2),\n            elist: newSeq[(int32, edgetype)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*[T](g: var WeightedUnDirectedStaticGraph[T], u, v: int, cost: T) =\n        g.add_edge_static_impl(u, v, cost, false)\n\n    proc initUnWeightedDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedDirectedStaticGraph =\n        result = UnWeightedDirectedStaticGraph(\n            src: newSeqOfCap[int32](capacity),\n            dst: newSeqOfCap[int32](capacity),\n            cost: newSeqOfCap[int](capacity),\n            elist: newSeq[(int32, int)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*(g: var UnWeightedDirectedStaticGraph, u, v: int) =\n        g.add_edge_static_impl(u, v, 1, true)\n\n    proc initUnWeightedUnDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedUnDirectedStaticGraph =\n        result = UnWeightedUnDirectedStaticGraph(\n            src: newSeqOfCap[int32](capacity*2),\n            dst: newSeqOfCap[int32](capacity*2),\n            cost: newSeqOfCap[int](capacity*2),\n            elist: newSeq[(int32, int)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*(g: var UnWeightedUnDirectedStaticGraph, u, v: int) =\n        g.add_edge_static_impl(u, v, 1, false)\n\n    proc static_graph_initialized_check*[T](g: StaticGraph[T]) = assert g.start.len > 0, \"Static Graph must be initialized before use.\"\n\n    iterator `[]`*[T](g: WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T], x: int): (int, T) =\n        g.static_graph_initialized_check()\n        for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n    iterator `[]`*(g: UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph, x: int): int =\n        g.static_graph_initialized_check()\n        for i in g.start[x]..<g.start[x+1]: yield g.elist[i][0].int\n\n    iterator to_and_cost*[T](g: DynamicGraph[T], x: int): (int, T) =\n        for e in g.edges[x]: yield (e[0].int, e[1])\n    iterator to_and_cost*[T](g: StaticGraph[T], x: int): (int, T) =\n        g.static_graph_initialized_check()\n        for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n    \n    import tables\n\n    type UnWeightedUnDirectedTableGraph*[T] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : UnWeightedUnDirectedGraph\n\n    type UnWeightedDirectedTableGraph*[T] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : UnWeightedDirectedGraph\n\n    type WeightedUnDirectedTableGraph*[T,S] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : WeightedUnDirectedGraph[S]\n\n    type WeightedDirectedTableGraph*[T,S] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : WeightedDirectedGraph[S]\n\n    type UnWeightedTableGraph*[T] = UnWeightedUnDirectedTableGraph[T] or UnWeightedDirectedTableGraph[T]\n    type WeightedTableGraph*[T,S] = WeightedUnDirectedTableGraph[T,S] or WeightedDirectedTableGraph[T,S]\n\n    proc initUnWeightedUnDirectedTableGraph*[T](V:seq[T]):UnWeightedUnDirectedTableGraph[T]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initUnWeightedUnDirectedGraph(len(V))\n        result.v = V\n\n    proc initUnWeightedDirectedTableGraph*[T](V:seq[T]):UnWeightedDirectedTableGraph[T]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initUnWeightedDirectedGraph(len(V))\n        result.v = V\n\n    proc initWeightedUnDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedUnDirectedTableGraph[T,S]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initWeightedUnDirectedGraph(len(V),S)\n        result.v = V\n\n    proc initWeightedDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedDirectedTableGraph[T,S]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initWeightedDirectedGraph(len(V),S)\n        result.v = V\n\n    proc add_edge*[T](g: var UnWeightedTableGraph[T],u,v:int)=\n        g.graph.add_edge(g.toi[u],g.toi[v])\n\n    proc add_edge*[T,S](g: var WeightedTableGraph[T,S],u,v:int,cost:S)=\n        g.graph.add_edge(g.toi[u],g.toi[v],cost)\n\n    iterator `[]`*[T,S](g: WeightedDirectedTableGraph[T,S] or WeightedUnDirectedTableGraph[T,S], x: T): (T, S) = \n        for (x,y) in g.graph[g.toi[x]]:\n            yield (g.v[x],y)\n    iterator `[]`*[T](g: UnWeightedDirectedTableGraph[T] or UnWeightedUnDirectedTableGraph[T], x: T): T = \n        for x in g.graph[g.toi[x]]:\n            yield g.v[x]\n\n"
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/tree/heavylightdecomposition.nim
ImportExpand "cplib/tree/heavylightdecomposition" <=== "when not declared CPLIB_TREE_HLD:\n    const CPLIB_TREE_HLD* = 1\n    import sequtils\n    import algorithm\n    import sets\n    # https://atcoder.jp/contests/abc337/submissions/50216964\n    # ↑上記の提出より引用\n    type HeavyLightDecomposition* = ref object \n        N*: int\n        P*, PP*, PD*, D*, I*, rangeL*, rangeR*: seq[int]\n    proc initHld*(g: UnDirectedGraph, root: int): HeavyLightDecomposition =\n        var hld = HeavyLightDecomposition()\n        var n: int = g.len\n        hld.N = n\n        hld.P = newSeqWith(n, -1)\n        hld.I = newSeqWith(n, 0)\n        hld.I[0] = root\n        var iI = 1\n        for i in 0..<n:\n            var p = hld.I[i]\n            for e in g[p]:\n                if hld.P[p] != e:\n                    hld.I[iI] = e\n                    hld.P[e] = p\n                    iI += 1\n        var Z = newSeqWith(n, 1)\n        var nx = newSeqWith(n, -1)\n        hld.PP = newSeqWith(n, 0)\n        for i in 0..<n:\n            hld.PP[i] = i\n        for i in 1..<n:\n            var p = hld.I[n-i]\n            Z[hld.P[p]] += Z[p]\n            if nx[hld.P[p]] == -1 or Z[nx[hld.P[p]]] < Z[p]:\n                nx[hld.P[p]] = p\n        for p in hld.I:\n            if nx[p] != -1:\n                hld.PP[nx[p]] = p\n        hld.PD = newSeqWith(n, n)\n        hld.PD[root] = 0\n        hld.D = newSeqWith(n, 0)\n        for p in hld.I:\n            if p != root:\n                hld.PP[p] = hld.PP[hld.PP[p]]\n                hld.PD[p] = min(hld.PD[hld.PP[p]], hld.PD[hld.P[p]]+1)\n                hld.D[p] = hld.D[hld.P[p]]+1\n        hld.rangeL = newSeqWith(n, 0)\n        hld.rangeR = newSeqWith(n, 0)\n        for p in hld.I:\n            hld.rangeR[p] = hld.rangeL[p] + Z[p]\n            var ir = hld.rangeR[p]\n            for e in g[p]:\n                if hld.P[p] != e and e != nx[p]:\n                    ir -= Z[e]\n                    hld.rangeL[e] = ir\n            if nx[p] != -1:\n                hld.rangeL[nx[p]] = hld.rangeL[p] + 1\n        for i in 0..<n:\n            hld.I[hld.rangeL[i]] = i\n        return hld\n    proc initHld*(g: DirectedGraph, root: int): HeavyLightDecomposition =\n        var n = g.len\n        var gn = initUnWeightedUnDirectedStaticGraph(n)\n        var seen = initHashSet[(int, int)]()\n        for i in 0..<n:\n            for (j, _) in g[i]:\n                if (i, j) notin seen:\n                    gn.add_edge(i, j)\n                    seen.incl((i, j))\n                    seen.incl((j, i))\n        gn.build\n        return initHld(gn, root)\n    proc initHld*(adj: seq[seq[int]], root: int): HeavyLightDecomposition =\n        var n = adj.len\n        var gn = initUnWeightedUnDirectedStaticGraph(n)\n        var seen = initHashSet[(int, int)]()\n        for i in 0..<n:\n            for j in adj[i]:\n                if (i, j) notin seen:\n                    gn.add_edge(i, j)\n                    seen.incl((i, j))\n                    seen.incl((j, i))\n        gn.build\n        return initHld(gn, root)\n    proc numVertices*(hld: HeavyLightDecomposition): int = hld.N\n    proc depth*(hld: HeavyLightDecomposition, p: int): int = hld.D[p]\n    proc toSeq*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeL[vtx]\n    proc toVtx*(hld: HeavyLightDecomposition, seqidx: int): int = hld.I[seqidx]\n    proc toSeq2In*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeL[vtx] * 2 - hld.D[vtx]\n    proc toSeq2Out*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeR[vtx] * 2 - hld.D[vtx] - 1\n    proc parentOf*(hld: HeavyLightDecomposition, v: int): int = hld.P[v]\n    proc heavyRootOf*(hld: HeavyLightDecomposition, v: int): int = hld.PP[v]\n    proc heavyChildOf*(hld: HeavyLightDecomposition, v: int): int =\n        if hld.toSeq(v) == hld.N-1:\n            return -1\n        var cand = hld.toVtx(hld.toSeq(v) + 1)\n        if hld.PP[v] == hld.PP[cand]:\n            return cand\n        -1\n    proc lca*(hld: HeavyLightDecomposition, u: int, v: int): int =\n        var (u, v) = (u, v)\n        if hld.PD[u] < hld.PD[v]:\n            swap(u, v)\n        while hld.PD[u] > hld.PD[v]:\n            u = hld.P[hld.PP[u]]\n        while hld.PP[u] != hld.PP[v]:\n            u = hld.P[hld.PP[u]]\n            v = hld.P[hld.PP[v]]\n        if hld.D[u] > hld.D[v]:\n            return v\n        u\n    proc dist*(hld: HeavyLightDecomposition, u: int, v: int): int =\n        hld.depth(u) + hld.depth(v) - hld.depth(hld.lca(u, v)) * 2\n    proc path*(hld: HeavyLightDecomposition, r: int, c: int, include_root: bool, reverse_path: bool): seq[(int, int)] =\n        var (r, c) = (r, c)\n        var k = hld.PD[c] - hld.PD[r] + 1\n        if k <= 0:\n            return @[]\n        var res = newSeqWith(k, (0, 0))\n        for i in 0..<k-1:\n            res[i] = (hld.rangeL[hld.PP[c]], hld.rangeL[c] + 1)\n            c = hld.P[hld.PP[c]]\n        if hld.PP[r] != hld.PP[c] or hld.D[r] > hld.D[c]:\n            return @[]\n        var root_off = int(not include_root)\n        res[^1] = (hld.rangeL[r]+root_off, hld.rangeL[c]+1)\n        if res[^1][0] == res[^1][1]:\n            discard res.pop()\n            k -= 1\n        if reverse_path:\n            for i in 0..<k:\n                res[i] = (hld.N - res[i][1], hld.N - res[i][0])\n        else:\n            res.reverse()\n        res\n    proc subtree*(hld: HeavyLightDecomposition, p: int): (int, int) = (hld.rangeL[p], hld.rangeR[p])\n    iterator subtreeV*(hld: HeavyLightDecomposition, p: int):int=\n        for i in hld.rangeL[p]..<hld.rangeR[p]:\n            yield hld.toVtx(i)\n    proc median*(hld: HeavyLightDecomposition, x: int, y: int, z: int): int =\n        hld.lca(x, y) xor hld.lca(y, z) xor hld.lca(x, z)\n    proc la*(hld: HeavyLightDecomposition, starting: int, goal: int, d: int): int =\n        var (u, v, d) = (starting, goal, d)\n        if d < 0:\n            return -1\n        var g = hld.lca(u, v)\n        var dist0 = hld.D[u] - hld.D[g] * 2 + hld.D[v]\n        if dist0 < d:\n            return -1\n        var p = u\n        if hld.D[u] - hld.D[g] < d:\n            p = v\n            d = dist0 - d\n        while hld.D[p] - hld.D[hld.PP[p]] < d:\n            d -= hld.D[p] - hld.D[hld.PP[p]] + 1\n            p = hld.P[hld.PP[p]]\n        hld.I[hld.rangeL[p] - d]\n    iterator children*(hld: HeavyLightDecomposition, v: int): int =\n        var s = hld.rangeL[v] + 1\n        while s < hld.rangeR[v]:\n            var w = hld.toVtx(s)\n            yield w\n            s += hld.rangeR[w] - hld.rangeL[w]\n    \n\n    proc initAuxiliaryTree*(hld:HeavyLightDecomposition,v:seq[int]):UnWeightedUnDirectedTableGraph[int]=\n        var v = v.sortedByit(hld.toseq(it))\n        for i in 0..<(len(v)-1):\n            v.add(hld.lca(v[i],v[i+1]))\n        v = v.sortedByIt(hld.toseq(it)).deduplicate(true)\n        var stack :seq[int]\n        result = initUnWeightedUnDirectedTableGraph[int](v)\n        stack.add(v[0])\n        \n        for i in 1..<len(v):\n            while len(stack) > 0 and hld.toSeq2Out(stack[^1]) < hld.toseq2In(v[i]):\n                discard stack.pop()\n            if len(stack) != 0:\n                result.add_edge(stack[^1],v[i])\n            stack.add(v[i])\n    \n    proc initAuxiliaryWeightedTree*(hld:HeavyLightDecomposition,v:seq[int]):WeightedUnDirectedTableGraph[int,int]=\n        var v = v.sortedByit(hld.toseq(it))\n        for i in 0..<(len(v)-1):\n            v.add(hld.lca(v[i],v[i+1]))\n        v = v.sortedByIt(hld.toseq(it)).deduplicate(true)\n        var stack :seq[int]\n        result = initWeightedUnDirectedTableGraph(v,int)\n        stack.add(v[0])\n        for i in 1..<len(v):\n            while len(stack) > 0 and hld.toSeq2Out(stack[^1]) < hld.toseq2In(v[i]):\n                discard stack.pop()\n            if len(stack) != 0:\n                result.add_edge(stack[^1],v[i],hld.depth(v[i])-hld.depth(stack[^1]))\n            stack.add(v[i])\n\n"

# {.checks: off.}

# 与えられた k については木DPでこの問題を解くことができる。
# k = 1,2,...,N-1 について愚直に木DPをするのは間に合わないが、
# 次数 k 未満の頂点はシンボルを描くことができないので
# 次数 k 以上の頂点で auxiliary tree を構築して木DPできそう
# 次数 k 以上の頂点の個数の最大値は 2N/k なので、総和が O(N log N) でおさえられる。
# おさえられるし、最悪ケースが作りにくそうなので実際にはもっと少ない?
# (雑に考えるとN^(1/2)をN^(1/2)個とかくらいが限界そう)

var n = input(int)
var edges = newSeqWith(n-1, newSeq[int]())
var deg = newSeq[int](n)
for i in 0..<n:
    deg[i] = input(int)
    for _ in 0..<deg[i]:
        var eid = input(int) - 1
        edges[eid].add(i)
var g = initUnWeightedUnDirectedStaticGraph(n)
for i in 0..<n-1:
    g.add_edge(edges[i][0], edges[i][1])
g.build
var hld = g.initHld(0)
var preorder = newSeqWith(n, -1)
block:
    var cnt = 0
    proc calc_preorder(u, par: int) =
        preorder[u] = cnt
        cnt += 1
        for v in g[u]:
            if v == par: continue
            calc_preorder(v, u)
    calc_preorder(0, -1)

proc create_auxiliary_tree(v: seq[int]): (WeightedUnDirectedStaticGraph[int], seq[int]) =
    var v = v.sortedByIt(preorder[it])
    var t = v.len
    for i in 0..<t-1:
        v.add(hld.lca(v[i], v[i+1]))
    v = v.sortedByIt(preorder[it]).deduplicate(true)
    t = v.len
    var stack = @[0]
    var edges = newSeq[(int, int, int)]()
    for i in 1..<t:
        var u = v[i]
        while hld.lca(v[stack[^1]], u) != v[stack[^1]]:
            var ln = hld.D[v[stack[^1]]] - hld.D[v[stack[^2]]]
            edges.add((stack[^1], stack[^2], ln))
            discard stack.pop
        stack.add(i)
    while stack.len > 1:
        var ln = hld.D[v[stack[^1]]] - hld.D[v[stack[^2]]]
        edges.add((stack[^1], stack[^2], ln))
        discard stack.pop
    var g = initWeightedUnDirectedStaticGraph(t)
    for (u, v, cost) in edges:
        g.add_edge(u, v, cost)
    g.build
    return (g, v)

var r = (0..<n).toSeq
var ans = newSeq[int]()
for k in 1..(n-1):
    var rn = newSeq[int]()
    for u in r:
        if deg[u] < k: continue
        rn.add(u)
    swap(r, rn)
    if r.len == 0:
        ans.add(0)
        continue
    var (tree, node_map) = create_auxiliary_tree(r)
    # if k != 2: continue
    # debug(r)
    # debug(node_map)
    proc calc_dp(u, par: int): (int, int) =
        var s = node_map[u]
        var w0 = deg[s] - 1 - k
        var w1 = deg[s] - k
        var dpi = newSeq[(int, int)]()
        for (v, cost) in tree[u]:
            if v == par: continue
            dpi.add(calc_dp(v, u))
            if cost > 1:
                dpi[^1] = (dpi[^1][1], dpi[^1][1])
        dpi = dpi.sortedByIt(it[0] - it[1])
        if deg[s] < k:
            var ans = dpi.mapIt(it[1]).sum
            return (ans, ans)
        debug(dpi, w0, w1)
        # w0.min = dpi.len
        # w1.min = dpi.len
        var ans0_1 = dpi.mapIt(it[1]).sum
        var ans0_2 = 1
        var ans1 = 1
        for i in 0..<dpi.len:
            var (a, b) = dpi[i]
            ans0_2 += (if i < w0: b else: a)
            ans1 += (if i < w1: b else: a)
        if w0 < 0: ans0_2 = -INFL
        debug(u, s, ans0_1, ans0_2, ans1)
        var a = max(ans0_1, ans0_2)
        var b = max(a, ans1)
        return (a, b)
    var (ans0, ans1) = calc_dp(0, -1)
    if r[0] == 0:
        ans.add(ans0)
    else:
        ans.add(ans1)
print(ans)
0