結果
問題 | No.132 点と平面との距離 |
ユーザー | しらっ亭 |
提出日時 | 2016-08-30 02:43:39 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 35 ms / 5,000 ms |
コード長 | 13,767 bytes |
コンパイル時間 | 2,863 ms |
コンパイル使用メモリ | 199,680 KB |
実行使用メモリ | 6,816 KB |
最終ジャッジ日時 | 2024-11-14 06:57:50 |
合計ジャッジ時間 | 3,374 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,816 KB |
testcase_01 | AC | 12 ms
6,816 KB |
testcase_02 | AC | 35 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define PI (3.14159265358979323846) #define EPS (1e-7) #define curr(P, i) P[(i) % P.size()] #define next(P, i) P[(i+1) % P.size()] #define prev(P, i) P[(i+P.size()-1) % P.size()] #define diff(P, i) (next(P,i) - curr(P,i)) #define EQ(x,y) (fabs((x)-(y))<EPS) #define GE(x,y) ((x)+EPS>(y)) #define LE(x,y) ((x)<(y)+EPS) enum { OUT, ON, IN }; typedef complex<double> P; typedef vector<P> G; namespace std{ bool operator < (const P& a, const P& b) { return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b); } } double cross(const P& a, const P& b) { return imag(conj(a)*b); } double dot(const P& a, const P& b) { return real(conj(a)*b); } struct L : public vector<P> { L(){} L(const P &a, const P &b) { push_back(a); push_back(b); } }; struct C { P p; double r; C(const P &p, double r) : p(p), r(r) { } }; int ccw(P a, P b, P c) { b -= a; c -= a; if (cross(b, c) > EPS) return +1; // counter clockwise if (cross(b, c) < -EPS) return -1; // clockwise if (dot(b, c) < -EPS) return +2; // c--a--b on line if (norm(b) < norm(c)+EPS) return -2; // a--b--c on line return 0; } bool intersectLL(const L &l, const L &m) { return abs(cross(l[1]-l[0], m[1]-m[0])) > EPS || // non-parallel abs(cross(l[1]-l[0], m[0]-l[0])) < EPS; // same line } bool intersectLS(const L &l, const L &s) { return cross(l[1]-l[0], s[0]-l[0])* // s[0] is left of l cross(l[1]-l[0], s[1]-l[0]) < EPS; // s[1] is right of l } bool intersectLP(const L &l, const P &p) { return abs(cross(l[1]-p, l[0]-p)) < EPS; } bool intersectSS(const L &s, const L &t) { return ccw(s[0],s[1],t[0])*ccw(s[0],s[1],t[1]) <= 0 && ccw(t[0],t[1],s[0])*ccw(t[0],t[1],s[1]) <= 0; } bool intersectSP(const L &s, const P &p) { return abs(s[0]-p)+abs(s[1]-p)-abs(s[1]-s[0]) < EPS; // triangle inequality } P projection(const L &l, const P &p) { double t = dot(p-l[0], l[0]-l[1]) / norm(l[0]-l[1]); return l[0] + t*(l[0]-l[1]); } P reflection(const L &l, const P &p) { return p + 2.0 * (projection(l, p) - p); } double distanceLP(const L &l, const P &p) { return abs(p - projection(l, p)); } double distanceLL(const L &l, const L &m) { return intersectLL(l, m) ? 0 : distanceLP(l, m[0]); } double distanceLS(const L &l, const L &s) { if (intersectLS(l, s)) return 0; return min(distanceLP(l, s[0]), distanceLP(l, s[1])); } double distanceSP(const L &s, const P &p) { const P r = projection(s, p); if (intersectSP(s, r)) return abs(r - p); return min(abs(s[0] - p), abs(s[1] - p)); } double distanceSS(const L &s, const L &t) { if (intersectSS(s, t)) return 0; return min(min(distanceSP(s, t[0]), distanceSP(s, t[1])), min(distanceSP(t, s[0]), distanceSP(t, s[1]))); } P crossP(const L &l, const L &m) { double A = cross(l[1] - l[0], m[1] - m[0]); double B = cross(l[1] - l[0], l[1] - m[0]); if (abs(A) < EPS && abs(B) < EPS) return m[0]; // same line if (abs(A) < EPS) assert(false); // !!!PRECONDITION NOT SATISFIED!!! return m[0] + B / A * (m[1] - m[0]); } vector<P> crossPLC(const L &l, const C &c){ vector<P> res; P p = projection(l, c.p); double d1 = abs(p - c.p); if(EQ(d1, c.r)){ res.push_back(p); return res; } if(d1 > c.r){ return res; } double d2 = sqrt(c.r*c.r - d1*d1); P v = d2/abs(l[1] - l[0]) * (l[1] - l[0]); res.push_back(p + v); res.push_back(p - v); return res; } #define sq(x) ((x)*(x)) vector<P> crossPCC(const C &c1, const C &c2){ vector<P> res; P v = c2.p - c1.p; double d = abs(v); if(d < EPS){ if(EQ(c1.r, c2.r)){ // coincide res.push_back(c1.p + P(c1.r, 0)); } return res; } vector<double> thetas; if(EQ(d, c1.r + c2.r)){ thetas.push_back(0); }else if(EQ(d, c1.r - c2.r)){ thetas.push_back(0); }else if(EQ(d, c2.r - c1.r)){ thetas.push_back(PI); }else if(d > c1.r + c2.r || d < abs(c1.r - c2.r)){ return res; }else{ double t = acos((sq(c1.r) + sq(d) - sq(c2.r)) / (2.0 * c1.r * d)); thetas.push_back(t); thetas.push_back(-t); } for (int i=0; i < (int) thetas.size(); i++){ res.push_back(c1.p + c1.r/d * v * P(cos(thetas[i]), sin(thetas[i]))); } return res; } vector<L> tangentPC(const P& p, const C& c){ vector<L> res; P v = c.p - p; double d1 = abs(v), d2; if(EQ(d1, c.r)){ d2 = sqrt(sq(d1) - sq(c.r)); P q = p + v * P(cos(PI/2.0), sin(PI/2.0)); res.push_back(L(q, p)); return res; }else if(d1 < c.r){ return res; }else{ d2 = sqrt(sq(d1) - sq(c.r)); double t = atan2(c.r, d2); P q = p + d2/d1 * v * P(cos(t), sin(t)); res.push_back(L(p, q)); q = p + d2/d1 * v * P(cos(-t), sin(-t)); res.push_back(L(p, q)); return res; } } vector<L> commontangentCC(const C& c1, const C& c2){ vector<L> res; P v = c2.p - c1.p; double d = abs(v); if(d < EPS){ if(EQ(c1.r, c2.r)){ // coinside P q1 = c1.p + P(c1.r, 0); P q2 = q1 + P(0, c1.r); res.push_back(L(q1, q2)); } return res; } if(d + EPS <= abs(c1.r - c2.r)){ return res; }else if(EQ(d, c1.r - c2.r)){ P q1 = c1.r/d * v; P q2 = q1 + v * P(cos(PI/2.0), sin(PI/2.0)); res.push_back(L(q1, q2)); return res; }else if(EQ(d, c2.r - c1.r)){ P q1 = c2.r/d * -v; P q2 = q1 + v * P(cos(PI/2.0), sin(PI/2.0)); res.push_back(L(q1, q2)); return res; }else{ double t1 = asin((c2.r - c1.r)/d) + PI/2.0; P q1 = c1.p + c1.r/d * v * P(cos(t1), sin(t1)); P q2 = c2.p + c2.r/d * v * P(cos(t1), sin(t1)); res.push_back(L(q1, q2)); q1 = c1.p + c1.r/d * v * P(cos(-t1), sin(-t1)); q2 = c2.p + c2.r/d * v * P(cos(-t1), sin(-t1)); res.push_back(L(q1, q2)); if(d + EPS <= c1.r + c2.r){ return res; }else if(EQ(d, c1.r + c2.r)){ P q3 = c1.p + c1.r/d * v; P q4 = q3 + v * P(cos(PI/2.0), sin(PI/2.0)); res.push_back(L(q3, q4)); }else{ double t2 = acos((c1.r + c2.r)/d); P q3 = c1.p + c1.r/d * v * P(cos(t2), sin(t2)); P q4 = c2.p - c2.r/d * v * P(cos(t2), sin(t2)); res.push_back(L(q3, q4)); q3 = c1.p + c1.r/d * v * P(cos(-t2), sin(-t2)); q4 = c2.p - c2.r/d * v * P(cos(-t2), sin(-t2)); res.push_back(L(q3, q4)); } } return res; } vector<C> tangentcircleLL(const L& l, const L& m, const double& r){ vector<C> res; if(abs(cross(l[1]-l[0], m[1]-m[0])) < EPS){ // parallel double d = distanceLL(l, m); if(EQ(d, r*2.0)){ P p = P(l[0] + r/abs(l[1]-l[0]) * (l[1]-l[0]) * P(cos(PI/2), sin(PI/2))); res.push_back(C(p, r)); } return res; } P p = crossP(l, m); double t1 = (arg(m[1]-m[0]) - arg(l[1]-l[0])) / 2.0; P v1 = abs(r/sin(t1)) / abs(l[1]-l[0]) * (l[1]-l[0]) * P(cos(t1), sin(t1)); double t2 = PI/2 - t1; P v2 = abs(r/sin(t2)) / abs(m[1]-m[0]) * (m[1]-m[0]) * P(cos(t2), sin(t2)); res.push_back(C(p + v1, r)); res.push_back(C(p + v2, r)); res.push_back(C(p - v1, r)); res.push_back(C(p - v2, r)); return res; } #undef sq int contains(const G& g, const P& p) { bool in = false; for (int i = 0; i < (int) g.size(); ++i) { P a = curr(g,i) - p, b = next(g,i) - p; if (imag(a) > imag(b)) swap(a, b); if (imag(a) <= 0 && 0 < imag(b)) if (cross(a, b) < 0) in = !in; if (cross(a, b) == 0 && dot(a, b) <= 0) return ON; } return in ? IN : OUT; } #define d(k) (dot(p[k], l[1] - l[0])) P extreme(const vector<P> &p, const L &l) { int k = 0; for (int i = 1; i < (int) p.size(); ++i) if (d(i) > d(k)) k = i; return p[k]; } #undef d double area2(const G& p) { double A = 0; for (int i = 0; i < (int) p.size(); ++i) A += cross(curr(p, i), next(p, i)); return A; } vector<P> convex_hull(vector<P> ps) { int n = ps.size(), k = 0; sort(ps.begin(), ps.end()); vector<P> ch(2*n); for (int i = 0; i < n; ch[k++] = ps[i++]) // lower-hull while (k >= 2 && ccw(ch[k-2], ch[k-1], ps[i]) <= 0) --k; for (int i = n-2, t = k+1; i >= 0; ch[k++] = ps[i--]) // upper-hull while (k >= t && ccw(ch[k-2], ch[k-1], ps[i]) <= 0) --k; ch.resize(k-1); return ch; } bool isconvex(const G &P) { for (int i = 0; i < (int) P.size(); ++i) if (ccw(prev(P, i), curr(P, i), next(P, i)) > 0) return false; return true; } G convex_cut(const G& p, const L& l) { G Q; for (int i = 0; i < (int) p.size(); ++i) { P A = curr(p, i), B = next(p, i); if (ccw(l[0], l[1], A) != -1) Q.push_back(A); if (ccw(l[0], l[1], A)*ccw(l[0], l[1], B) < 0) Q.push_back(crossP(L(A, B), l)); } return Q; } int convex_contains(const G &Q, const P &p) { const int n = Q.size(); P g = (Q[0] + Q[n/3] + Q[2*n/3]) / 3.0; // inner-P int a = 0, b = n; while (a+1 < b) { // invariant: c is in fan g-Q[a]-Q[b] int c = (a + b) / 2; if (cross(Q[a]-g, Q[c]-g) > 0) { // angle < 180 deg if (cross(Q[a]-g, p-g) > 0 && cross(Q[c]-g, p-g) < 0) b = c; else a = c; } else { if (cross(Q[a]-g, p-g) < 0 && cross(Q[c]-g, p-g) > 0) a = c; else b = c; } } b %= n; if (cross(Q[a] - p, Q[b] - p) < 0) return 0; if (cross(Q[a] - p, Q[b] - p) > 0) return 2; return 1; } bool intersect_1pt(const P& a, const P& b, const P& c, const P& d, P &r) { double D = cross(b - a, d - c); if (EQ(D, 0)) return false; double t = cross(c - a, d - c) / D; double s = -cross(a - c, b - a) / D; r = a + t * (b - a); return GE(t, 0) && LE(t, 1) && GE(s, 0) && LE(s, 1); } G convex_intersect(const G &p, const G &Q) { const int n = p.size(), m = Q.size(); int a = 0, b = 0, aa = 0, ba = 0; enum { Pin, Qin, Unknown } in = Unknown; G R; do { int a1 = (a+n-1) % n, b1 = (b+m-1) % m; double C = cross(p[a] - p[a1], Q[b] - Q[b1]); double A = cross(p[a1] - Q[b], p[a] - Q[b]); double B = cross(Q[b1] - p[a], Q[b] - p[a]); P r; if (intersect_1pt(p[a1], p[a], Q[b1], Q[b], r)) { if (in == Unknown) aa = ba = 0; R.push_back( r ); in = B > 0 ? Pin : A > 0 ? Qin : in; } if (C == 0 && B == 0 && A == 0) { if (in == Pin) { b = (b + 1) % m; ++ba; } else { a = (a + 1) % m; ++aa; } } else if (C >= 0) { if (A > 0) { if (in == Pin) R.push_back(p[a]); a = (a+1)%n; ++aa; } else { if (in == Qin) R.push_back(Q[b]); b = (b+1)%m; ++ba; } } else { if (B > 0) { if (in == Qin) R.push_back(Q[b]); b = (b+1)%m; ++ba; } else { if (in == Pin) R.push_back(p[a]); a = (a+1)%n; ++aa; } } } while ( (aa < n || ba < m) && aa < 2*n && ba < 2*m ); if (in == Unknown) { if (convex_contains(Q, p[0])) return p; if (convex_contains(p, Q[0])) return Q; } return R; } double convex_diameter(const G &pt) { const int n = pt.size(); int is = 0, js = 0; for (int i = 1; i < n; ++i) { if (imag(pt[i]) > imag(pt[is])) is = i; if (imag(pt[i]) < imag(pt[js])) js = i; } double maxd = norm(pt[is]-pt[js]); int i, maxi, j, maxj; i = maxi = is; j = maxj = js; do { if (cross(diff(pt,i), diff(pt,j)) >= 0) j = (j+1) % n; else i = (i+1) % n; if (norm(pt[i]-pt[j]) > maxd) { maxd = norm(pt[i]-pt[j]); maxi = i; maxj = j; } } while (i != is || j != js); return maxd; /* farthest pair is (maxi, maxj). */ } #define d(k) (dot(p[k], l[1] - l[0])) P convex_extreme(const G &p, const L &l) { const int n = p.size(); int a = 0, b = n; if (d(0) >= d(n-1) && d(0) >= d(1)) return p[0]; while (a < b) { int c = (a + b) / 2; if (d(c) >= d(c-1) && d(c) >= d(c+1)) return p[c]; if (d(a+1) > d(a)) { if (d(c+1) <= d(c) || d(a) > d(c)) b = c; else a = c; } else { if (d(c+1) > d(c) || d(a) >= d(c)) a = c; else b = c; } } return P(); } #undef d #define _p(...) (void)printf(__VA_ARGS__) #define forr(x,arr) for(auto&& x:arr) #define _overload3(_1,_2,_3,name,...) name #define _rep2(i,n) _rep3(i,0,n) #define _rep3(i,a,b) for(int i=int(a);i<int(b);++i) #define rep(...) _overload3(__VA_ARGS__,_rep3,_rep2,)(__VA_ARGS__) #define _rrep2(i,n) _rrep3(i,0,n) #define _rrep3(i,a,b) for(int i=int(b)-1;i>=int(a);i--) #define rrep(...) _overload3(__VA_ARGS__,_rrep3,_rrep2,)(__VA_ARGS__) #define ALL(x) (x).begin(), (x).end() #define BIT(n) (1LL<<(n)) #define SZ(x) ((int)(x).size()) #define fst first #define snd second typedef long long ll; typedef vector<int> vi;typedef vector<vi> vvi;typedef pair<int,int> pii;typedef vector<pii> vpii; void Main() { int N; cin >> N; double px, py, pz; cin >> px >> py >> pz; vector<double> X(N), Y(N), Z(N); rep(i, N) { cin >> X[i] >> Y[i] >> Z[i]; } double ans = 0; rep(i, N) { double ax = X[i]; double ay = Y[i]; double az = Z[i]; rep(j, i+1, N) { double bx = X[j]; double by = Y[j]; double bz = Z[j]; double abx = ax - bx; double aby = ay - by; double abz = az - bz; rep(k, j+1, N) { double cx = X[k]; double cy = Y[k]; double cz = Z[k]; double acx = ax - cx; double acy = ay - cy; double acz = az - cz; double hx = aby * acz - abz * acy; double hy = abz * acx - abx * acz; double hz = abx * acy - aby * acx; double d = hx * -ax + hy * -ay + hz * -az; double si = fabs(hx * px + hy * py + hz * pz + d); double bo = sqrt(hx*hx + hy*hy + hz*hz); double D = si / bo; ans += D; } } } _p("%.20f\n", ans); } int main() { cin.tie(0); ios::sync_with_stdio(false); Main(); return 0; }