結果
| 問題 | No.141 魔法少女コバ |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-12-17 15:29:37 |
| 言語 | C++23 (gcc 15.2.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 5,000 ms |
| コード長 | 5,794 bytes |
| 記録 | |
| コンパイル時間 | 1,505 ms |
| コンパイル使用メモリ | 131,360 KB |
| 実行使用メモリ | 7,852 KB |
| 最終ジャッジ日時 | 2025-12-17 15:29:42 |
| 合計ジャッジ時間 | 4,785 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 93 |
ソースコード
#include <algorithm>
#include <bit>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <functional>
#include <iostream>
#include <limits>
#include <numeric>
#include <queue> // credit atcoder
#include <set>
#include <sstream>
#include <string>
#include <tuple>
#include <vector>
/*
g++ -std=c++23 -O2 -Wall -Wextra A.cpp -o A
./A < input.in > output.out
*/
// credit atcoder
// https://github.com/atcoder/ac-library/blob/master/document_en/mincostflow.md
namespace internal {
template <class T>
struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
} // namespace internal
template <class Cap>
struct mf_graph {
public:
mf_graph() : _n(0) {}
mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
g[from].push_back(_edge{to, int(g[to].size()), cap});
g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto& _e = g[pos[i].first][pos[i].second];
auto& _re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); }
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int& i = iter[v]; i < int(g[v].size()); i++) {
_edge& e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d = self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) break;
}
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
while (flow < flow_limit) {
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
template <typename T>
struct Dijkstra {
using edge = std::pair<T, int>; // weight & vertex id num
const T INF = std::numeric_limits<T>::max() / 2;
int n;
std::vector<std::vector<edge>> edges;
Dijkstra(int _n) : n(_n), edges(n) {}
// Add a directed edge from u -> v;
void add_edge(int u, int v, T weight) { edges[u].emplace_back(weight, v); }
// return dist [0..n - 1] pred[0..n - 1]
std::pair<std::vector<T>, std::vector<int>> shortest_paths(int s) {
std::vector<T> dist(n, INF);
std::vector<int> pred(n, -1);
dist[s] = 0;
std::priority_queue<edge, std::vector<edge>, std::greater<edge>> pq;
pq.emplace(0, s);
while (!pq.empty()) {
auto [d, u] = pq.top();
pq.pop();
if (d == dist[u]) {
for (auto [w, v] : edges[u]) {
if (dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
pred[v] = u;
pq.emplace(dist[v], v);
}
}
}
}
return {dist, pred};
}
std::vector<int> get_path(int v, const std::vector<int>& pred) {
std::vector<int> path = {v};
while (pred[v] != -1) {
path.push_back(pred[v]);
v = pred[v];
}
reverse(path.begin(), path.end());
return path;
}
};
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n, m;
std::cin >> n >> m;
int ans = 0;
while (m) {
if (n < m) {
ans += 1;
std::swap(n, m);
} else {
int q = n / m;
ans += q;
n -= q * m;
}
}
std::cout << ans -2 << "\n";
return 0;
}