結果
| 問題 | No.3414 Aperiodic Sequence |
| コンテスト | |
| ユーザー |
wolgnik
|
| 提出日時 | 2025-12-18 13:37:33 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 618 ms / 3,000 ms |
| コード長 | 6,484 bytes |
| 記録 | |
| コンパイル時間 | 14,856 ms |
| コンパイル使用メモリ | 400,260 KB |
| 実行使用メモリ | 28,384 KB |
| 最終ジャッジ日時 | 2025-12-20 23:31:13 |
| 合計ジャッジ時間 | 19,129 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 15 |
ソースコード
use proconio::input;
const MOD: u64 = 998244353;
fn pow_mod(mut base: u64, mut exp: u64, m: u64) -> u64 {
let mut result = 1u64;
base %= m;
while exp > 0 {
if exp & 1 == 1 {
result = result * base % m;
}
exp >>= 1;
base = base * base % m;
}
result
}
fn mod_inv(a: u64, m: u64) -> u64 {
pow_mod(a, m - 2, m)
}
struct Convolution {
w: Vec<u64>,
iw: Vec<u64>,
}
impl Convolution {
fn new() -> Self {
let g: u64 = 3;
let ig: u64 = 332748118;
let w: Vec<u64> = (0..24).map(|i| pow_mod(g, (MOD - 1) >> i, MOD)).collect();
let iw: Vec<u64> = (0..24).map(|i| pow_mod(ig, (MOD - 1) >> i, MOD)).collect();
Convolution { w, iw }
}
fn fmt(&self, k: usize, a: &mut Vec<u64>) {
for l in (1..=k).rev() {
let d = 1 << (l - 1);
let w = self.w[l];
let mut i = 0;
while i < a.len() {
let mut u = 1u64;
for j in 0..d {
let s = i + j;
let x = a[s];
let y = a[s + d];
a[s] = (x + y) % MOD;
a[s + d] = u * ((x + MOD - y) % MOD) % MOD;
u = u * w % MOD;
}
i += d * 2;
}
}
}
fn ifmt(&self, k: usize, a: &mut Vec<u64>) {
for l in 1..=k {
let d = 1 << (l - 1);
let w = self.iw[l];
let mut i = 0;
while i < a.len() {
let mut u = 1u64;
for j in 0..d {
let s = i + j;
let y = a[s + d] * u % MOD;
let x = a[s];
a[s] = (x + y) % MOD;
a[s + d] = (x + MOD - y) % MOD;
u = u * w % MOD;
}
i += d * 2;
}
}
}
fn convolve(&self, a: &[u64], b: &[u64]) -> Vec<u64> {
let n0 = a.len() + b.len() - 1;
if n0 == 1 {
return vec![a[0] * b[0] % MOD];
}
if a.len().min(b.len()) <= 50 {
let mut res = vec![0u64; n0];
for (i, &ai) in a.iter().enumerate() {
for (j, &bj) in b.iter().enumerate() {
res[i + j] = (res[i + j] + ai * bj) % MOD;
}
}
return res;
}
let k = (n0 as u64).next_power_of_two().trailing_zeros() as usize;
let n = 1 << k;
let mut a_ext = a.to_vec();
a_ext.resize(n, 0);
let mut b_ext = b.to_vec();
b_ext.resize(n, 0);
self.fmt(k, &mut a_ext);
self.fmt(k, &mut b_ext);
let mut c: Vec<u64> = (0..n).map(|i| a_ext[i] * b_ext[i] % MOD).collect();
self.ifmt(k, &mut c);
let invn = mod_inv(n as u64, MOD);
c.iter_mut().for_each(|x| *x = *x * invn % MOD);
c.truncate(n0);
c
}
}
fn fps_inv(conv: &Convolution, f: &[u64], deg: usize) -> Vec<u64> {
let mut res = vec![mod_inv(f[0], MOD)];
let mut d = 1usize;
while d < deg {
d <<= 1;
let f_trunc: Vec<u64> = f.iter().take(d).cloned().collect();
let mut fg = conv.convolve(&res, &f_trunc);
let ln = fg.len();
for i in 0..ln {
fg[i] = (MOD - fg[i] % MOD) % MOD;
}
fg.resize(d, 0);
fg[0] = (fg[0] + 2) % MOD;
res = conv.convolve(&res, &fg);
res.truncate(d);
}
res.truncate(deg);
res
}
fn calc_g(conv: &Convolution, v: &[u64], m: usize) -> Vec<u64> {
let n = v.len();
if n == 0 {
return vec![0; m + 1];
}
let deg = m + 2;
let mut polys: Vec<Vec<u64>> = v
.iter()
.map(|&vi| vec![1, (MOD - vi % MOD) % MOD])
.collect();
while polys.len() > 1 {
let mut new_polys = Vec::new();
let mut i = 0;
while i < polys.len() {
if i + 1 < polys.len() {
let mut q_new = conv.convolve(&polys[i], &polys[i + 1]);
if q_new.len() > deg {
q_new.truncate(deg);
}
new_polys.push(q_new);
} else {
new_polys.push(polys[i].clone());
}
i += 2;
}
polys = new_polys;
}
let mut q = polys.into_iter().next().unwrap();
q.truncate(deg);
let q_deriv: Vec<u64> = (0..q.len().saturating_sub(1))
.map(|k| (k as u64 + 1) * q[k + 1] % MOD)
.collect();
let neg_q_deriv: Vec<u64> = q_deriv.iter().map(|&x| (MOD - x % MOD) % MOD).collect();
let q_inv = fps_inv(conv, &q, m + 1);
let s = conv.convolve(&neg_q_deriv, &q_inv);
let mut result = vec![n as u64];
for i in 0..m {
if i < s.len() {
result.push(s[i]);
} else {
result.push(0);
}
}
result
}
fn main() {
input! {
n: usize,
m: usize,
v: [u64; n],
}
let conv = Convolution::new();
let g = calc_g(&conv, &v, m);
// メビウス関数
let mut mobius = vec![0i64; m + 1];
mobius[1] = 1;
let mut spf: Vec<usize> = (0..=m).collect();
let sqrt_m = (m as f64).sqrt() as usize + 1;
for i in 2..=sqrt_m {
if spf[i] == i {
let mut j = i * i;
while j <= m {
if spf[j] == j {
spf[j] = i;
}
j += i;
}
}
}
for i in 2..=m {
let p = spf[i];
let prev = i / p;
if prev % p == 0 {
mobius[i] = 0;
} else {
mobius[i] = -mobius[prev];
}
}
// 約数
let mut divisors: Vec<Vec<usize>> = vec![Vec::new(); m + 1];
for i in 1..=m {
let mut j = i;
while j <= m {
divisors[j].push(i);
j += i;
}
}
// solve
let mut res = Vec::with_capacity(m);
for n in 1..=m {
let mut f = 0u64;
for &d in &divisors[n] {
let mu = mobius[n / d];
if mu != 0 {
let base = g[n / d];
let val = pow_mod(base, d as u64, MOD);
if mu > 0 {
f = (f + val) % MOD;
} else {
f = (f + MOD - val) % MOD;
}
}
}
res.push(f.to_string());
}
println!("{}", res.join(" "));
}
wolgnik