結果

問題 No.3412 Christmas Tree Coloring
コンテスト
ユーザー PCTprobability
提出日時 2025-12-19 00:01:43
言語 C++17
(gcc 13.3.0 + boost 1.89.0)
結果
WA  
実行時間 -
コード長 61,296 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 5,635 ms
コンパイル使用メモリ 278,828 KB
実行使用メモリ 7,848 KB
最終ジャッジ日時 2025-12-19 00:01:52
合計ジャッジ時間 7,461 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 15 WA * 5
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using ull = unsigned long long;
#define endl "\n"
typedef pair<int, int> Pii;
#define REP(i, n) for (int i = 0; i < (n); ++i)
#define REP3(i, m, n) for (int i = (m); (i) < int(n); ++ (i))
#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define ALL(x) begin(x), end(x)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(s) (s).begin(),(s).end()
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
#define rever(vec) reverse(vec.begin(), vec.end())
#define sor(vec) sort(vec.begin(), vec.end())
#define fi first
#define FOR_(n) for (ll _ = 0; (_) < (ll)(n); ++(_))
#define FOR(i, n) for (ll i = 0; (i) < (ll)(n); ++(i))
#define se second
#define pb push_back
#define P pair<ll,ll>
#define PQminll priority_queue<ll, vector<ll>, greater<ll>>
#define PQmaxll priority_queue<ll,vector<ll>,less<ll>>
#define PQminP priority_queue<P, vector<P>, greater<P>>
#define PQmaxP priority_queue<P,vector<P>,less<P>>
#define NP next_permutation
#define die(a) {cout<<a<<endl;return 0;}
#define dier(a) {return a;}
//const ll mod = 1000000009;
const ll mod = 998244353;
//const ll mod = 1000000007;
const ll inf = 4000000000000000000ll;
const ld eps = ld(0.00000000001);
static const long double pi = 3.141592653589793;
template<class T>void vcin(vector<T> &n){for(int i=0;i<int(n.size());i++) cin>>n[i];}
template<class T,class K>void vcin(vector<T> &n,vector<K> &m){for(int i=0;i<int(n.size());i++) cin>>n[i]>>m[i];}
template<class T>void vcout(vector<T> &n){for(int i=0;i<int(n.size());i++){cout<<n[i]<<" ";}cout<<endl;}
template<class T>void vcin(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cin>>n[i][j];}}}
template<class T>void vcout(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cout<<n[i][j]<<" ";}cout<<endl;}cout<<endl;}
void yes(bool a){cout<<(a?"yes":"no")<<endl;}
void YES(bool a){cout<<(a?"YES":"NO")<<endl;}
void Yes(bool a){cout<<(a?"Yes":"No")<<endl;}
void possible(bool a){ cout<<(a?"possible":"impossible")<<endl; }
void Possible(bool a){ cout<<(a?"Possible":"Impossible")<<endl; }
void POSSIBLE(bool a){ cout<<(a?"POSSIBLE":"IMPOSSIBLE")<<endl; }
#define FOR_R(i, n) for (ll i = (ll)(n)-1; (i) >= 0; --(i))
template<class T>auto min(const T& a){ return *min_element(all(a)); }
//template<class T>auto max(const T& a){ return *max_element(all(a)); }
template<class T,class F>void print(pair<T,F> a){cout<<a.fi<<" "<<a.se<<endl;}
template<class T,class U>bool chmax(T &a,const U b) { if (a<b) { a=b; return 1; } return 0;}
template<class T>bool chmin(T &a,const T b) { if (b<a) { a=b; return 1; } return 0;}
template<class T> void ifmin(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}}
template<class T> void ifmax(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}}
ll fastgcd(ll u,ll v){ll shl=0;while(u&&v&&u!=v){bool eu=!(u&1);bool ev=!(v&1);if(eu&&ev){++shl;u>>=1;v>>=1;}else if(eu&&!ev){u>>=1;}else if(!eu&&ev){v>>=1;}else if(u>=v){u=(u-v)>>1;}else{ll tmp=u;u=(v-u)>>1;v=tmp;}}return !u?v<<shl:u<<shl;}
ll modPow(ll a, ll n, ll mod) { if(mod==1) return 0;ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }
vector<ll> divisor(ll x){ vector<ll> ans; for(ll i = 1; i * i <= x; i++){ if(x % i == 0) {ans.push_back(i); if(i*i!=x){ ans.push_back(x / ans[i]);}}}sor(ans); return ans; }
ll pop(ll x){return __builtin_popcountll(x);}
ll poplong(ll x){ll y=-1;while(x){x/=2;y++;}return y;}
P hyou(P a){ll x=fastgcd(abs(a.fi),abs(a.se));a.fi/=x;a.se/=x;if(a.se<0){a.fi*=-1;a.se*=-1;}return a;}
P Pplus(P a,P b){ return hyou({a.fi*b.se+b.fi*a.se,a.se*b.se});}
P Ptimes(P a,ll b){ return hyou({a.fi*b,a.se});}
P Ptimes(P a,P b){ return hyou({a.fi*b.fi,a.se*b.se});}
P Pminus(P a,P b){ return hyou({a.fi*b.se-b.fi*a.se,a.se*b.se});}
P Pgyaku(P a){ return hyou({a.se,a.fi});}
 
void cincout(){
  ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
  cout<< fixed << setprecision(15);
}
#include <algorithm>
#include <array>

#ifdef _MSC_VER
#include <intrin.h>
#endif
 
namespace atcoder {

namespace internal {

int ceil_pow2(int n) {
	int x = 0;
	while ((1U << x) < (unsigned int)(n)) x++;
	return x;
}

int bsf(unsigned int n) {
#ifdef _MSC_VER
	unsigned long index;
	_BitScanForward(&index, n);
	return index;
#else
	return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder



#include <utility>

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
	x %= m;
	if (x < 0) x += m;
	return x;
}

struct barrett {
	unsigned int _m;
	unsigned long long im;

	barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

	unsigned int umod() const { return _m; }

	unsigned int mul(unsigned int a, unsigned int b) const {

		unsigned long long z = a;
		z *= b;
#ifdef _MSC_VER
		unsigned long long x;
		_umul128(z, im, &x);
#else
		unsigned long long x =
			(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
		unsigned int v = (unsigned int)(z - x * _m);
		if (_m <= v) v += _m;
		return v;
	}
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
	if (m == 1) return 0;
	unsigned int _m = (unsigned int)(m);
	unsigned long long r = 1;
	unsigned long long y = safe_mod(x, m);
	while (n) {
		if (n & 1) r = (r * y) % _m;
		y = (y * y) % _m;
		n >>= 1;
	}
	return r;
}

constexpr bool is_prime_constexpr(int n) {
	if (n <= 1) return false;
	if (n == 2 || n == 7 || n == 61) return true;
	if (n % 2 == 0) return false;
	long long d = n - 1;
	while (d % 2 == 0) d /= 2;
	for (long long a : {2, 7, 61}) {
		long long t = d;
		long long y = pow_mod_constexpr(a, t, n);
		while (t != n - 1 && y != 1 && y != n - 1) {
			y = y * y % n;
			t <<= 1;
		}
		if (y != n - 1 && t % 2 == 0) {
			return false;
		}
	}
	return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
	a = safe_mod(a, b);
	if (a == 0) return {b, 0};

	long long s = b, t = a;
	long long m0 = 0, m1 = 1;

	while (t) {
		long long u = s / t;
		s -= t * u;
		m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


		auto tmp = s;
		s = t;
		t = tmp;
		tmp = m0;
		m0 = m1;
		m1 = tmp;
	}
	if (m0 < 0) m0 += b / s;
	return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
	if (m == 2) return 1;
	if (m == 167772161) return 3;
	if (m == 469762049) return 3;
	if (m == 754974721) return 11;
	if (m == 998244353) return 3;
	int divs[20] = {};
	divs[0] = 2;
	int cnt = 1;
	int x = (m - 1) / 2;
	while (x % 2 == 0) x /= 2;
	for (int i = 3; (long long)(i)*i <= x; i += 2) {
		if (x % i == 0) {
			divs[cnt++] = i;
			while (x % i == 0) {
				x /= i;
			}
		}
	}
	if (x > 1) {
		divs[cnt++] = x;
	}
	for (int g = 2;; g++) {
		bool ok = true;
		for (int i = 0; i < cnt; i++) {
			if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
				ok = false;
				break;
			}
		}
		if (ok) return g;
	}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
	typename std::conditional<std::is_same<T, __int128_t>::value ||
								  std::is_same<T, __int128>::value,
							  std::true_type,
							  std::false_type>::type;

template <class T>
using is_unsigned_int128 =
	typename std::conditional<std::is_same<T, __uint128_t>::value ||
								  std::is_same<T, unsigned __int128>::value,
							  std::true_type,
							  std::false_type>::type;

template <class T>
using make_unsigned_int128 =
	typename std::conditional<std::is_same<T, __int128_t>::value,
							  __uint128_t,
							  unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
												  is_signed_int128<T>::value ||
												  is_unsigned_int128<T>::value,
											  std::true_type,
											  std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
												 std::is_signed<T>::value) ||
													is_signed_int128<T>::value,
												std::true_type,
												std::false_type>::type;

template <class T>
using is_unsigned_int =
	typename std::conditional<(is_integral<T>::value &&
							   std::is_unsigned<T>::value) ||
								  is_unsigned_int128<T>::value,
							  std::true_type,
							  std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
	is_signed_int128<T>::value,
	make_unsigned_int128<T>,
	typename std::conditional<std::is_signed<T>::value,
							  std::make_unsigned<T>,
							  std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
	typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
							  std::true_type,
							  std::false_type>::type;

template <class T>
using is_unsigned_int =
	typename std::conditional<is_integral<T>::value &&
								  std::is_unsigned<T>::value,
							  std::true_type,
							  std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
											  std::make_unsigned<T>,
											  std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
	using mint = static_modint;

  public:
	static constexpr int mod() { return m; }
	static mint raw(int v) {
		mint x;
		x._v = v;
		return x;
	}

	static_modint() : _v(0) {}
	template <class T, internal::is_signed_int_t<T>* = nullptr>
	static_modint(T v) {
		long long x = (long long)(v % (long long)(umod()));
		if (x < 0) x += umod();
		_v = (unsigned int)(x);
	}
	template <class T, internal::is_unsigned_int_t<T>* = nullptr>
	static_modint(T v) {
		_v = (unsigned int)(v % umod());
	}
	static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

	unsigned int val() const { return _v; }

	mint& operator++() {
		_v++;
		if (_v == umod()) _v = 0;
		return *this;
	}
	mint& operator--() {
		if (_v == 0) _v = umod();
		_v--;
		return *this;
	}
	mint operator++(int) {
		mint result = *this;
		++*this;
		return result;
	}
	mint operator--(int) {
		mint result = *this;
		--*this;
		return result;
	}

	mint& operator+=(const mint& rhs) {
		_v += rhs._v;
		if (_v >= umod()) _v -= umod();
		return *this;
	}
	mint& operator-=(const mint& rhs) {
		_v -= rhs._v;
		if (_v >= umod()) _v += umod();
		return *this;
	}
	mint& operator*=(const mint& rhs) {
		unsigned long long z = _v;
		z *= rhs._v;
		_v = (unsigned int)(z % umod());
		return *this;
	}
	mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

	mint operator+() const { return *this; }
	mint operator-() const { return mint() - *this; }

	mint pow(long long n) const {
		assert(0 <= n);
		mint x = *this, r = 1;
		while (n) {
			if (n & 1) r *= x;
			x *= x;
			n >>= 1;
		}
		return r;
	}
	mint inv() const {
		if (prime) {
			assert(_v);
			return pow(umod() - 2);
		} else {
			auto eg = internal::inv_gcd(_v, m);
			assert(eg.first == 1);
			return eg.second;
		}
	}

	friend mint operator+(const mint& lhs, const mint& rhs) {
		return mint(lhs) += rhs;
	}
	friend mint operator-(const mint& lhs, const mint& rhs) {
		return mint(lhs) -= rhs;
	}
	friend mint operator*(const mint& lhs, const mint& rhs) {
		return mint(lhs) *= rhs;
	}
	friend mint operator/(const mint& lhs, const mint& rhs) {
		return mint(lhs) /= rhs;
	}
	friend bool operator==(const mint& lhs, const mint& rhs) {
		return lhs._v == rhs._v;
	}
	friend bool operator!=(const mint& lhs, const mint& rhs) {
		return lhs._v != rhs._v;
	}

  private:
	unsigned int _v;
	static constexpr unsigned int umod() { return m; }
	static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
	using mint = dynamic_modint;

  public:
	static int mod() { return (int)(bt.umod()); }
	static void set_mod(int m) {
		assert(1 <= m);
		bt = internal::barrett(m);
	}
	static mint raw(int v) {
		mint x;
		x._v = v;
		return x;
	}

	dynamic_modint() : _v(0) {}
	template <class T, internal::is_signed_int_t<T>* = nullptr>
	dynamic_modint(T v) {
		long long x = (long long)(v % (long long)(mod()));
		if (x < 0) x += mod();
		_v = (unsigned int)(x);
	}
	template <class T, internal::is_unsigned_int_t<T>* = nullptr>
	dynamic_modint(T v) {
		_v = (unsigned int)(v % mod());
	}
	dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

	unsigned int val() const { return _v; }

	mint& operator++() {
		_v++;
		if (_v == umod()) _v = 0;
		return *this;
	}
	mint& operator--() {
		if (_v == 0) _v = umod();
		_v--;
		return *this;
	}
	mint operator++(int) {
		mint result = *this;
		++*this;
		return result;
	}
	mint operator--(int) {
		mint result = *this;
		--*this;
		return result;
	}

	mint& operator+=(const mint& rhs) {
		_v += rhs._v;
		if (_v >= umod()) _v -= umod();
		return *this;
	}
	mint& operator-=(const mint& rhs) {
		_v += mod() - rhs._v;
		if (_v >= umod()) _v -= umod();
		return *this;
	}
	mint& operator*=(const mint& rhs) {
		_v = bt.mul(_v, rhs._v);
		return *this;
	}
	mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

	mint operator+() const { return *this; }
	mint operator-() const { return mint() - *this; }

	mint pow(long long n) const {
		assert(0 <= n);
		mint x = *this, r = 1;
		while (n) {
			if (n & 1) r *= x;
			x *= x;
			n >>= 1;
		}
		return r;
	}
	mint inv() const {
		auto eg = internal::inv_gcd(_v, mod());
		assert(eg.first == 1);
		return eg.second;
	}

	friend mint operator+(const mint& lhs, const mint& rhs) {
		return mint(lhs) += rhs;
	}
	friend mint operator-(const mint& lhs, const mint& rhs) {
		return mint(lhs) -= rhs;
	}
	friend mint operator*(const mint& lhs, const mint& rhs) {
		return mint(lhs) *= rhs;
	}
	friend mint operator/(const mint& lhs, const mint& rhs) {
		return mint(lhs) /= rhs;
	}
	friend bool operator==(const mint& lhs, const mint& rhs) {
		return lhs._v == rhs._v;
	}
	friend bool operator!=(const mint& lhs, const mint& rhs) {
		return lhs._v != rhs._v;
	}

  private:
	unsigned int _v;
	static internal::barrett bt;
	static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <type_traits>
#include <vector>

namespace atcoder {

namespace internal {

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
	static constexpr int g = internal::primitive_root<mint::mod()>;
	int n = int(a.size());
	int h = internal::ceil_pow2(n);

	static bool first = true;
	static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
	if (first) {
		first = false;
		mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
		int cnt2 = bsf(mint::mod() - 1);
		mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
		for (int i = cnt2; i >= 2; i--) {
			es[i - 2] = e;
			ies[i - 2] = ie;
			e *= e;
			ie *= ie;
		}
		mint now = 1;
		for (int i = 0; i < cnt2 - 2; i++) {
			sum_e[i] = es[i] * now;
			now *= ies[i];
		}
	}
	for (int ph = 1; ph <= h; ph++) {
		int w = 1 << (ph - 1), p = 1 << (h - ph);
		mint now = 1;
		for (int s = 0; s < w; s++) {
			int offset = s << (h - ph + 1);
			for (int i = 0; i < p; i++) {
				auto l = a[i + offset];
				auto r = a[i + offset + p] * now;
				a[i + offset] = l + r;
				a[i + offset + p] = l - r;
			}
			now *= sum_e[bsf(~(unsigned int)(s))];
		}
	}
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
	static constexpr int g = internal::primitive_root<mint::mod()>;
	int n = int(a.size());
	int h = internal::ceil_pow2(n);

	static bool first = true;
	static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
	if (first) {
		first = false;
		mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
		int cnt2 = bsf(mint::mod() - 1);
		mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
		for (int i = cnt2; i >= 2; i--) {
			es[i - 2] = e;
			ies[i - 2] = ie;
			e *= e;
			ie *= ie;
		}
		mint now = 1;
		for (int i = 0; i < cnt2 - 2; i++) {
			sum_ie[i] = ies[i] * now;
			now *= es[i];
		}
	}

	for (int ph = h; ph >= 1; ph--) {
		int w = 1 << (ph - 1), p = 1 << (h - ph);
		mint inow = 1;
		for (int s = 0; s < w; s++) {
			int offset = s << (h - ph + 1);
			for (int i = 0; i < p; i++) {
				auto l = a[i + offset];
				auto r = a[i + offset + p];
				a[i + offset] = l + r;
				a[i + offset + p] =
					(unsigned long long)(mint::mod() + l.val() - r.val()) *
					inow.val();
			}
			inow *= sum_ie[bsf(~(unsigned int)(s))];
		}
	}
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
	int n = int(a.size()), m = int(b.size());
	if (!n || !m) return {};
	if (std::min(n, m) <= 60) {
		if (n < m) {
			std::swap(n, m);
			std::swap(a, b);
		}
		std::vector<mint> ans(n + m - 1);
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < m; j++) {
				ans[i + j] += a[i] * b[j];
			}
		}
		return ans;
	}
	int z = 1 << internal::ceil_pow2(n + m - 1);
	a.resize(z);
	internal::butterfly(a);
	b.resize(z);
	internal::butterfly(b);
	for (int i = 0; i < z; i++) {
		a[i] *= b[i];
	}
	internal::butterfly_inv(a);
	a.resize(n + m - 1);
	mint iz = mint(z).inv();
	for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
	return a;
}

template <unsigned int mod = 998244353,
		  class T,
		  std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
	int n = int(a.size()), m = int(b.size());
	if (!n || !m) return {};

	using mint = static_modint<mod>;
	std::vector<mint> a2(n), b2(m);
	for (int i = 0; i < n; i++) {
		a2[i] = mint(a[i]);
	}
	for (int i = 0; i < m; i++) {
		b2[i] = mint(b[i]);
	}
	auto c2 = convolution(move(a2), move(b2));
	std::vector<T> c(n + m - 1);
	for (int i = 0; i < n + m - 1; i++) {
		c[i] = c2[i].val();
	}
	return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
									  const std::vector<long long>& b) {
	int n = int(a.size()), m = int(b.size());
	if (!n || !m) return {};

	static constexpr unsigned long long MOD1 = 754974721;  // 2^24
	static constexpr unsigned long long MOD2 = 167772161;  // 2^25
	static constexpr unsigned long long MOD3 = 469762049;  // 2^26
	static constexpr unsigned long long M2M3 = MOD2 * MOD3;
	static constexpr unsigned long long M1M3 = MOD1 * MOD3;
	static constexpr unsigned long long M1M2 = MOD1 * MOD2;
	static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

	static constexpr unsigned long long i1 =
		internal::inv_gcd(MOD2 * MOD3, MOD1).second;
	static constexpr unsigned long long i2 =
		internal::inv_gcd(MOD1 * MOD3, MOD2).second;
	static constexpr unsigned long long i3 =
		internal::inv_gcd(MOD1 * MOD2, MOD3).second;

	auto c1 = convolution<MOD1>(a, b);
	auto c2 = convolution<MOD2>(a, b);
	auto c3 = convolution<MOD3>(a, b);

	std::vector<long long> c(n + m - 1);
	for (int i = 0; i < n + m - 1; i++) {
		unsigned long long x = 0;
		x += (c1[i] * i1) % MOD1 * M2M3;
		x += (c2[i] * i2) % MOD2 * M1M3;
		x += (c3[i] * i3) % MOD3 * M1M2;
		long long diff =
			c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
		if (diff < 0) diff += MOD1;
		static constexpr unsigned long long offset[5] = {
			0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
		x -= offset[diff % 5];
		c[i] = x;
	}

	return c;
}

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <vector>

namespace atcoder {

struct dsu {
  public:
	dsu() : _n(0) {}
	dsu(int n) : _n(n), parent_or_size(n, -1) {}

	int merge(int a, int b) {
		assert(0 <= a && a < _n);
		assert(0 <= b && b < _n);
		int x = leader(a), y = leader(b);
		if (x == y) return x;
		if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
		parent_or_size[x] += parent_or_size[y];
		parent_or_size[y] = x;
		return x;
	}

	bool same(int a, int b) {
		assert(0 <= a && a < _n);
		assert(0 <= b && b < _n);
		return leader(a) == leader(b);
	}

	int leader(int a) {
		assert(0 <= a && a < _n);
		if (parent_or_size[a] < 0) return a;
		return parent_or_size[a] = leader(parent_or_size[a]);
	}

	int size(int a) {
		assert(0 <= a && a < _n);
		return -parent_or_size[leader(a)];
	}

	std::vector<std::vector<int>> groups() {
		std::vector<int> leader_buf(_n), group_size(_n);
		for (int i = 0; i < _n; i++) {
			leader_buf[i] = leader(i);
			group_size[leader_buf[i]]++;
		}
		std::vector<std::vector<int>> result(_n);
		for (int i = 0; i < _n; i++) {
			result[i].reserve(group_size[i]);
		}
		for (int i = 0; i < _n; i++) {
			result[leader_buf[i]].push_back(i);
		}
		result.erase(
			std::remove_if(result.begin(), result.end(),
						   [&](const std::vector<int>& v) { return v.empty(); }),
			result.end());
		return result;
	}

  private:
	int _n;
	std::vector<int> parent_or_size;
};

}  // namespace atcoder


#include <cassert>
#include <vector>

namespace atcoder {

template <class T> struct fenwick_tree {
	using U = internal::to_unsigned_t<T>;

  public:
	fenwick_tree() : _n(0) {}
	fenwick_tree(int n) : _n(n), data(n) {}

	void add(int p, T x) {
		assert(0 <= p && p < _n);
		p++;
		while (p <= _n) {
			data[p - 1] += U(x);
			p += p & -p;
		}
	}

	T sum(int l, int r) {
		assert(0 <= l && l <= r && r <= _n);
		return sum(r) - sum(l);
	}

  private:
	int _n;
	std::vector<U> data;

	U sum(int r) {
		U s = 0;
		while (r > 0) {
			s += data[r - 1];
			r -= r & -r;
		}
		return s;
	}
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
namespace atcoder {

template <class S,
		  S (*op)(S, S),
		  S (*e)(),
		  class F,
		  S (*mapping)(F, S),
		  F (*composition)(F, F),
		  F (*id)()>
struct lazy_segtree {
  public:
	lazy_segtree() : lazy_segtree(0) {}
	lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
	lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
		log = internal::ceil_pow2(_n);
		size = 1 << log;
		d = std::vector<S>(2 * size, e());
		lz = std::vector<F>(size, id());
		for (int i = 0; i < _n; i++) d[size + i] = v[i];
		for (int i = size - 1; i >= 1; i--) {
			update(i);
		}
	}

	void set(int p, S x) {
		assert(0 <= p && p < _n);
		p += size;
		for (int i = log; i >= 1; i--) push(p >> i);
		d[p] = x;
		for (int i = 1; i <= log; i++) update(p >> i);
	}

	S get(int p) {
		assert(0 <= p && p < _n);
		p += size;
		for (int i = log; i >= 1; i--) push(p >> i);
		return d[p];
	}

	S prod(int l, int r) {
		assert(0 <= l && l <= r && r <= _n);
		if (l == r) return e();

		l += size;
		r += size;

		for (int i = log; i >= 1; i--) {
			if (((l >> i) << i) != l) push(l >> i);
			if (((r >> i) << i) != r) push(r >> i);
		}

		S sml = e(), smr = e();
		while (l < r) {
			if (l & 1) sml = op(sml, d[l++]);
			if (r & 1) smr = op(d[--r], smr);
			l >>= 1;
			r >>= 1;
		}

		return op(sml, smr);
	}

	S all_prod() { return d[1]; }

	void apply(int p, F f) {
		assert(0 <= p && p < _n);
		p += size;
		for (int i = log; i >= 1; i--) push(p >> i);
		d[p] = mapping(f, d[p]);
		for (int i = 1; i <= log; i++) update(p >> i);
	}
	void apply(int l, int r, F f) {
		assert(0 <= l && l <= r && r <= _n);
		if (l == r) return;

		l += size;
		r += size;

		for (int i = log; i >= 1; i--) {
			if (((l >> i) << i) != l) push(l >> i);
			if (((r >> i) << i) != r) push((r - 1) >> i);
		}

		{
			int l2 = l, r2 = r;
			while (l < r) {
				if (l & 1) all_apply(l++, f);
				if (r & 1) all_apply(--r, f);
				l >>= 1;
				r >>= 1;
			}
			l = l2;
			r = r2;
		}

		for (int i = 1; i <= log; i++) {
			if (((l >> i) << i) != l) update(l >> i);
			if (((r >> i) << i) != r) update((r - 1) >> i);
		}
	}

	template <bool (*g)(S)> int max_right(int l) {
		return max_right(l, [](S x) { return g(x); });
	}
	template <class G> int max_right(int l, G g) {
		assert(0 <= l && l <= _n);
		assert(g(e()));
		if (l == _n) return _n;
		l += size;
		for (int i = log; i >= 1; i--) push(l >> i);
		S sm = e();
		do {
			while (l % 2 == 0) l >>= 1;
			if (!g(op(sm, d[l]))) {
				while (l < size) {
					push(l);
					l = (2 * l);
					if (g(op(sm, d[l]))) {
						sm = op(sm, d[l]);
						l++;
					}
				}
				return l - size;
			}
			sm = op(sm, d[l]);
			l++;
		} while ((l & -l) != l);
		return _n;
	}

	template <bool (*g)(S)> int min_left(int r) {
		return min_left(r, [](S x) { return g(x); });
	}
	template <class G> int min_left(int r, G g) {
		assert(0 <= r && r <= _n);
		assert(g(e()));
		if (r == 0) return 0;
		r += size;
		for (int i = log; i >= 1; i--) push((r - 1) >> i);
		S sm = e();
		do {
			r--;
			while (r > 1 && (r % 2)) r >>= 1;
			if (!g(op(d[r], sm))) {
				while (r < size) {
					push(r);
					r = (2 * r + 1);
					if (g(op(d[r], sm))) {
						sm = op(d[r], sm);
						r--;
					}
				}
				return r + 1 - size;
			}
			sm = op(d[r], sm);
		} while ((r & -r) != r);
		return 0;
	}

  private:
	int _n, size, log;
	std::vector<S> d;
	std::vector<F> lz;

	void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
	void all_apply(int k, F f) {
		d[k] = mapping(f, d[k]);
		if (k < size) lz[k] = composition(f, lz[k]);
	}
	void push(int k) {
		all_apply(2 * k, lz[k]);
		all_apply(2 * k + 1, lz[k]);
		lz[k] = id();
	}
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <tuple>
#include <vector>

namespace atcoder {

long long pow_mod(long long x, long long n, int m) {
	assert(0 <= n && 1 <= m);
	if (m == 1) return 0;
	internal::barrett bt((unsigned int)(m));
	unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
	while (n) {
		if (n & 1) r = bt.mul(r, y);
		y = bt.mul(y, y);
		n >>= 1;
	}
	return r;
}

long long inv_mod(long long x, long long m) {
	assert(1 <= m);
	auto z = internal::inv_gcd(x, m);
	assert(z.first == 1);
	return z.second;
}

std::pair<long long, long long> crt(const std::vector<long long>& r,
									const std::vector<long long>& m) {
	assert(r.size() == m.size());
	int n = int(r.size());
	long long r0 = 0, m0 = 1;
	for (int i = 0; i < n; i++) {
		assert(1 <= m[i]);
		long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
		if (m0 < m1) {
			std::swap(r0, r1);
			std::swap(m0, m1);
		}
		if (m0 % m1 == 0) {
			if (r0 % m1 != r1) return {0, 0};
			continue;
		}


		long long g, im;
		std::tie(g, im) = internal::inv_gcd(m0, m1);

		long long u1 = (m1 / g);
		if ((r1 - r0) % g) return {0, 0};

		long long x = (r1 - r0) / g % u1 * im % u1;

		r0 += x * m0;
		m0 *= u1;  // -> lcm(m0, m1)
		if (r0 < 0) r0 += m0;
	}
	return {r0, m0};
}

long long floor_sum(long long n, long long m, long long a, long long b) {
	long long ans = 0;
	if (a >= m) {
		ans += (n - 1) * n * (a / m) / 2;
		a %= m;
	}
	if (b >= m) {
		ans += n * (b / m);
		b %= m;
	}

	long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
	if (y_max == 0) return ans;
	ans += (n - (x_max + a - 1) / a) * y_max;
	ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
	return ans;
}

}  // namespace atcoder


#include <algorithm>

#include <vector>

namespace atcoder {

namespace internal {

template <class T> struct simple_queue {
	std::vector<T> payload;
	int pos = 0;
	void reserve(int n) { payload.reserve(n); }
	int size() const { return int(payload.size()) - pos; }
	bool empty() const { return pos == int(payload.size()); }
	void push(const T& t) { payload.push_back(t); }
	T& front() { return payload[pos]; }
	void clear() {
		payload.clear();
		pos = 0;
	}
	void pop() { pos++; }
};

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap> struct mf_graph {
  public:
	mf_graph() : _n(0) {}
	mf_graph(int n) : _n(n), g(n) {}

	int add_edge(int from, int to, Cap cap) {
		assert(0 <= from && from < _n);
		assert(0 <= to && to < _n);
		assert(0 <= cap);
		int m = int(pos.size());
		pos.push_back({from, int(g[from].size())});
		g[from].push_back(_edge{to, int(g[to].size()), cap});
		g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});
		return m;
	}

	struct edge {
		int from, to;
		Cap cap, flow;
	};

	edge get_edge(int i) {
		int m = int(pos.size());
		assert(0 <= i && i < m);
		auto _e = g[pos[i].first][pos[i].second];
		auto _re = g[_e.to][_e.rev];
		return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
	}
	std::vector<edge> edges() {
		int m = int(pos.size());
		std::vector<edge> result;
		for (int i = 0; i < m; i++) {
			result.push_back(get_edge(i));
		}
		return result;
	}
	void change_edge(int i, Cap new_cap, Cap new_flow) {
		int m = int(pos.size());
		assert(0 <= i && i < m);
		assert(0 <= new_flow && new_flow <= new_cap);
		auto& _e = g[pos[i].first][pos[i].second];
		auto& _re = g[_e.to][_e.rev];
		_e.cap = new_cap - new_flow;
		_re.cap = new_flow;
	}

	Cap flow(int s, int t) {
		return flow(s, t, std::numeric_limits<Cap>::max());
	}
	Cap flow(int s, int t, Cap flow_limit) {
		assert(0 <= s && s < _n);
		assert(0 <= t && t < _n);

		std::vector<int> level(_n), iter(_n);
		internal::simple_queue<int> que;

		auto bfs = [&]() {
			std::fill(level.begin(), level.end(), -1);
			level[s] = 0;
			que.clear();
			que.push(s);
			while (!que.empty()) {
				int v = que.front();
				que.pop();
				for (auto e : g[v]) {
					if (e.cap == 0 || level[e.to] >= 0) continue;
					level[e.to] = level[v] + 1;
					if (e.to == t) return;
					que.push(e.to);
				}
			}
		};
		auto dfs = [&](auto self, int v, Cap up) {
			if (v == s) return up;
			Cap res = 0;
			int level_v = level[v];
			for (int& i = iter[v]; i < int(g[v].size()); i++) {
				_edge& e = g[v][i];
				if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
				Cap d =
					self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
				if (d <= 0) continue;
				g[v][i].cap += d;
				g[e.to][e.rev].cap -= d;
				res += d;
				if (res == up) break;
			}
			return res;
		};

		Cap flow = 0;
		while (flow < flow_limit) {
			bfs();
			if (level[t] == -1) break;
			std::fill(iter.begin(), iter.end(), 0);
			while (flow < flow_limit) {
				Cap f = dfs(dfs, t, flow_limit - flow);
				if (!f) break;
				flow += f;
			}
		}
		return flow;
	}

	std::vector<bool> min_cut(int s) {
		std::vector<bool> visited(_n);
		internal::simple_queue<int> que;
		que.push(s);
		while (!que.empty()) {
			int p = que.front();
			que.pop();
			visited[p] = true;
			for (auto e : g[p]) {
				if (e.cap && !visited[e.to]) {
					visited[e.to] = true;
					que.push(e.to);
				}
			}
		}
		return visited;
	}

  private:
	int _n;
	struct _edge {
		int to, rev;
		Cap cap;
	};
	std::vector<std::pair<int, int>> pos;
	std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
	mcf_graph() {}
	mcf_graph(int n) : _n(n), g(n) {}

	int add_edge(int from, int to, Cap cap, Cost cost) {
		assert(0 <= from && from < _n);
		assert(0 <= to && to < _n);
		int m = int(pos.size());
		pos.push_back({from, int(g[from].size())});
		g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
		g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
		return m;
	}

	struct edge {
		int from, to;
		Cap cap, flow;
		Cost cost;
	};

	edge get_edge(int i) {
		int m = int(pos.size());
		assert(0 <= i && i < m);
		auto _e = g[pos[i].first][pos[i].second];
		auto _re = g[_e.to][_e.rev];
		return edge{
			pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
		};
	}
	std::vector<edge> edges() {
		int m = int(pos.size());
		std::vector<edge> result(m);
		for (int i = 0; i < m; i++) {
			result[i] = get_edge(i);
		}
		return result;
	}

	std::pair<Cap, Cost> flow(int s, int t) {
		return flow(s, t, std::numeric_limits<Cap>::max());
	}
	std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
		return slope(s, t, flow_limit).back();
	}
	std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
		return slope(s, t, std::numeric_limits<Cap>::max());
	}
	std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
		assert(0 <= s && s < _n);
		assert(0 <= t && t < _n);
		assert(s != t);
		std::vector<Cost> dual(_n, 0), dist(_n);
		std::vector<int> pv(_n), pe(_n);
		std::vector<bool> vis(_n);
		auto dual_ref = [&]() {
			std::fill(dist.begin(), dist.end(),
					  std::numeric_limits<Cost>::max());
			std::fill(pv.begin(), pv.end(), -1);
			std::fill(pe.begin(), pe.end(), -1);
			std::fill(vis.begin(), vis.end(), false);
			struct Q {
				Cost key;
				int to;
				bool operator<(Q r) const { return key > r.key; }
			};
			std::priority_queue<Q> que;
			dist[s] = 0;
			que.push(Q{0, s});
			while (!que.empty()) {
				int v = que.top().to;
				que.pop();
				if (vis[v]) continue;
				vis[v] = true;
				if (v == t) break;
				for (int i = 0; i < int(g[v].size()); i++) {
					auto e = g[v][i];
					if (vis[e.to] || !e.cap) continue;
					Cost cost = e.cost - dual[e.to] + dual[v];
					if (dist[e.to] - dist[v] > cost) {
						dist[e.to] = dist[v] + cost;
						pv[e.to] = v;
						pe[e.to] = i;
						que.push(Q{dist[e.to], e.to});
					}
				}
			}
			if (!vis[t]) {
				return false;
			}

			for (int v = 0; v < _n; v++) {
				if (!vis[v]) continue;
				dual[v] -= dist[t] - dist[v];
			}
			return true;
		};
		Cap flow = 0;
		Cost cost = 0, prev_cost = -1;
		std::vector<std::pair<Cap, Cost>> result;
		result.push_back({flow, cost});
		while (flow < flow_limit) {
			if (!dual_ref()) break;
			Cap c = flow_limit - flow;
			for (int v = t; v != s; v = pv[v]) {
				c = std::min(c, g[pv[v]][pe[v]].cap);
			}
			for (int v = t; v != s; v = pv[v]) {
				auto& e = g[pv[v]][pe[v]];
				e.cap -= c;
				g[v][e.rev].cap += c;
			}
			Cost d = -dual[s];
			flow += c;
			cost += c * d;
			if (prev_cost == d) {
				result.pop_back();
			}
			result.push_back({flow, cost});
			prev_cost = cost;
		}
		return result;
	}

  private:
	int _n;

	struct _edge {
		int to, rev;
		Cap cap;
		Cost cost;
	};

	std::vector<std::pair<int, int>> pos;
	std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder


#include <algorithm>

#include <algorithm>
#include <utility>
#include <vector>

namespace atcoder {
namespace internal {

template <class E> struct csr {
	std::vector<int> start;
	std::vector<E> elist;
	csr(int n, const std::vector<std::pair<int, E>>& edges)
		: start(n + 1), elist(edges.size()) {
		for (auto e : edges) {
			start[e.first + 1]++;
		}
		for (int i = 1; i <= n; i++) {
			start[i] += start[i - 1];
		}
		auto counter = start;
		for (auto e : edges) {
			elist[counter[e.first]++] = e.second;
		}
	}
};

struct scc_graph {
  public:
	scc_graph(int n) : _n(n) {}

	int num_vertices() { return _n; }

	void add_edge(int from, int to) { edges.push_back({from, {to}}); }

	std::pair<int, std::vector<int>> scc_ids() {
		auto g = csr<edge>(_n, edges);
		int now_ord = 0, group_num = 0;
		std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
		visited.reserve(_n);
		auto dfs = [&](auto self, int v) -> void {
			low[v] = ord[v] = now_ord++;
			visited.push_back(v);
			for (int i = g.start[v]; i < g.start[v + 1]; i++) {
				auto to = g.elist[i].to;
				if (ord[to] == -1) {
					self(self, to);
					low[v] = std::min(low[v], low[to]);
				} else {
					low[v] = std::min(low[v], ord[to]);
				}
			}
			if (low[v] == ord[v]) {
				while (true) {
					int u = visited.back();
					visited.pop_back();
					ord[u] = _n;
					ids[u] = group_num;
					if (u == v) break;
				}
				group_num++;
			}
		};
		for (int i = 0; i < _n; i++) {
			if (ord[i] == -1) dfs(dfs, i);
		}
		for (auto& x : ids) {
			x = group_num - 1 - x;
		}
		return {group_num, ids};
	}

	std::vector<std::vector<int>> scc() {
		auto ids = scc_ids();
		int group_num = ids.first;
		std::vector<int> counts(group_num);
		for (auto x : ids.second) counts[x]++;
		std::vector<std::vector<int>> groups(ids.first);
		for (int i = 0; i < group_num; i++) {
			groups[i].reserve(counts[i]);
		}
		for (int i = 0; i < _n; i++) {
			groups[ids.second[i]].push_back(i);
		}
		return groups;
	}

  private:
	int _n;
	struct edge {
		int to;
	};
	std::vector<std::pair<int, edge>> edges;
};

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <vector>

namespace atcoder {

struct scc_graph {
  public:
	scc_graph() : internal(0) {}
	scc_graph(int n) : internal(n) {}

	void add_edge(int from, int to) {
		int n = internal.num_vertices();
		assert(0 <= from && from < n);
		assert(0 <= to && to < n);
		internal.add_edge(from, to);
	}

	std::vector<std::vector<int>> scc() { return internal.scc(); }

  private:
	internal::scc_graph internal;
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <vector>

namespace atcoder {

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
	segtree() : segtree(0) {}
	segtree(int n) : segtree(std::vector<S>(n, e())) {}
	segtree(const std::vector<S>& v) : _n(int(v.size())) {
		log = internal::ceil_pow2(_n);
		size = 1 << log;
		d = std::vector<S>(2 * size, e());
		for (int i = 0; i < _n; i++) d[size + i] = v[i];
		for (int i = size - 1; i >= 1; i--) {
			update(i);
		}
	}

	void set(int p, S x) {
		assert(0 <= p && p < _n);
		p += size;
		d[p] = x;
		for (int i = 1; i <= log; i++) update(p >> i);
	}

	S get(int p) {
		assert(0 <= p && p < _n);
		return d[p + size];
	}

	S prod(int l, int r) {
		assert(0 <= l && l <= r && r <= _n);
		S sml = e(), smr = e();
		l += size;
		r += size;

		while (l < r) {
			if (l & 1) sml = op(sml, d[l++]);
			if (r & 1) smr = op(d[--r], smr);
			l >>= 1;
			r >>= 1;
		}
		return op(sml, smr);
	}

	S all_prod() { return d[1]; }

	template <bool (*f)(S)> int max_right(int l) {
		return max_right(l, [](S x) { return f(x); });
	}
	template <class F> int max_right(int l, F f) {
		assert(0 <= l && l <= _n);
		assert(f(e()));
		if (l == _n) return _n;
		l += size;
		S sm = e();
		do {
			while (l % 2 == 0) l >>= 1;
			if (!f(op(sm, d[l]))) {
				while (l < size) {
					l = (2 * l);
					if (f(op(sm, d[l]))) {
						sm = op(sm, d[l]);
						l++;
					}
				}
				return l - size;
			}
			sm = op(sm, d[l]);
			l++;
		} while ((l & -l) != l);
		return _n;
	}

	template <bool (*f)(S)> int min_left(int r) {
		return min_left(r, [](S x) { return f(x); });
	}
	template <class F> int min_left(int r, F f) {
		assert(0 <= r && r <= _n);
		assert(f(e()));
		if (r == 0) return 0;
		r += size;
		S sm = e();
		do {
			r--;
			while (r > 1 && (r % 2)) r >>= 1;
			if (!f(op(d[r], sm))) {
				while (r < size) {
					r = (2 * r + 1);
					if (f(op(d[r], sm))) {
						sm = op(d[r], sm);
						r--;
					}
				}
				return r + 1 - size;
			}
			sm = op(d[r], sm);
		} while ((r & -r) != r);
		return 0;
	}

  private:
	int _n, size, log;
	std::vector<S> d;

	void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>

namespace atcoder {

namespace internal {

std::vector<int> sa_naive(const std::vector<int>& s) {
	int n = int(s.size());
	std::vector<int> sa(n);
	std::iota(sa.begin(), sa.end(), 0);
	std::sort(sa.begin(), sa.end(), [&](int l, int r) {
		if (l == r) return false;
		while (l < n && r < n) {
			if (s[l] != s[r]) return s[l] < s[r];
			l++;
			r++;
		}
		return l == n;
	});
	return sa;
}

std::vector<int> sa_doubling(const std::vector<int>& s) {
	int n = int(s.size());
	std::vector<int> sa(n), rnk = s, tmp(n);
	std::iota(sa.begin(), sa.end(), 0);
	for (int k = 1; k < n; k *= 2) {
		auto cmp = [&](int x, int y) {
			if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
			int rx = x + k < n ? rnk[x + k] : -1;
			int ry = y + k < n ? rnk[y + k] : -1;
			return rx < ry;
		};
		std::sort(sa.begin(), sa.end(), cmp);
		tmp[sa[0]] = 0;
		for (int i = 1; i < n; i++) {
			tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
		}
		std::swap(tmp, rnk);
	}
	return sa;
}

template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
	int n = int(s.size());
	if (n == 0) return {};
	if (n == 1) return {0};
	if (n == 2) {
		if (s[0] < s[1]) {
			return {0, 1};
		} else {
			return {1, 0};
		}
	}
	if (n < THRESHOLD_NAIVE) {
		return sa_naive(s);
	}
	if (n < THRESHOLD_DOUBLING) {
		return sa_doubling(s);
	}

	std::vector<int> sa(n);
	std::vector<bool> ls(n);
	for (int i = n - 2; i >= 0; i--) {
		ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
	}
	std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
	for (int i = 0; i < n; i++) {
		if (!ls[i]) {
			sum_s[s[i]]++;
		} else {
			sum_l[s[i] + 1]++;
		}
	}
	for (int i = 0; i <= upper; i++) {
		sum_s[i] += sum_l[i];
		if (i < upper) sum_l[i + 1] += sum_s[i];
	}

	auto induce = [&](const std::vector<int>& lms) {
		std::fill(sa.begin(), sa.end(), -1);
		std::vector<int> buf(upper + 1);
		std::copy(sum_s.begin(), sum_s.end(), buf.begin());
		for (auto d : lms) {
			if (d == n) continue;
			sa[buf[s[d]]++] = d;
		}
		std::copy(sum_l.begin(), sum_l.end(), buf.begin());
		sa[buf[s[n - 1]]++] = n - 1;
		for (int i = 0; i < n; i++) {
			int v = sa[i];
			if (v >= 1 && !ls[v - 1]) {
				sa[buf[s[v - 1]]++] = v - 1;
			}
		}
		std::copy(sum_l.begin(), sum_l.end(), buf.begin());
		for (int i = n - 1; i >= 0; i--) {
			int v = sa[i];
			if (v >= 1 && ls[v - 1]) {
				sa[--buf[s[v - 1] + 1]] = v - 1;
			}
		}
	};

	std::vector<int> lms_map(n + 1, -1);
	int m = 0;
	for (int i = 1; i < n; i++) {
		if (!ls[i - 1] && ls[i]) {
			lms_map[i] = m++;
		}
	}
	std::vector<int> lms;
	lms.reserve(m);
	for (int i = 1; i < n; i++) {
		if (!ls[i - 1] && ls[i]) {
			lms.push_back(i);
		}
	}

	induce(lms);

	if (m) {
		std::vector<int> sorted_lms;
		sorted_lms.reserve(m);
		for (int v : sa) {
			if (lms_map[v] != -1) sorted_lms.push_back(v);
		}
		std::vector<int> rec_s(m);
		int rec_upper = 0;
		rec_s[lms_map[sorted_lms[0]]] = 0;
		for (int i = 1; i < m; i++) {
			int l = sorted_lms[i - 1], r = sorted_lms[i];
			int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
			int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
			bool same = true;
			if (end_l - l != end_r - r) {
				same = false;
			} else {
				while (l < end_l) {
					if (s[l] != s[r]) {
						break;
					}
					l++;
					r++;
				}
				if (l == n || s[l] != s[r]) same = false;
			}
			if (!same) rec_upper++;
			rec_s[lms_map[sorted_lms[i]]] = rec_upper;
		}

		auto rec_sa =
			sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

		for (int i = 0; i < m; i++) {
			sorted_lms[i] = lms[rec_sa[i]];
		}
		induce(sorted_lms);
	}
	return sa;
}

}  // namespace internal

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
	assert(0 <= upper);
	for (int d : s) {
		assert(0 <= d && d <= upper);
	}
	auto sa = internal::sa_is(s, upper);
	return sa;
}

template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
	int n = int(s.size());
	std::vector<int> idx(n);
	iota(idx.begin(), idx.end(), 0);
	sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
	std::vector<int> s2(n);
	int now = 0;
	for (int i = 0; i < n; i++) {
		if (i && s[idx[i - 1]] != s[idx[i]]) now++;
		s2[idx[i]] = now;
	}
	return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
	int n = int(s.size());
	std::vector<int> s2(n);
	for (int i = 0; i < n; i++) {
		s2[i] = s[i];
	}
	return internal::sa_is(s2, 255);
}

template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
						   const std::vector<int>& sa) {
	int n = int(s.size());
	assert(n >= 1);
	std::vector<int> rnk(n);
	for (int i = 0; i < n; i++) {
		rnk[sa[i]] = i;
	}
	std::vector<int> lcp(n - 1);
	int h = 0;
	for (int i = 0; i < n; i++) {
		if (h > 0) h--;
		if (rnk[i] == 0) continue;
		int j = sa[rnk[i] - 1];
		for (; j + h < n && i + h < n; h++) {
			if (s[j + h] != s[i + h]) break;
		}
		lcp[rnk[i] - 1] = h;
	}
	return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
	int n = int(s.size());
	std::vector<int> s2(n);
	for (int i = 0; i < n; i++) {
		s2[i] = s[i];
	}
	return lcp_array(s2, sa);
}

template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
	int n = int(s.size());
	if (n == 0) return {};
	std::vector<int> z(n);
	z[0] = 0;
	for (int i = 1, j = 0; i < n; i++) {
		int& k = z[i];
		k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
		while (i + k < n && s[k] == s[i + k]) k++;
		if (j + z[j] < i + z[i]) j = i;
	}
	z[0] = n;
	return z;
}

std::vector<int> z_algorithm(const std::string& s) {
	int n = int(s.size());
	std::vector<int> s2(n);
	for (int i = 0; i < n; i++) {
		s2[i] = s[i];
	}
	return z_algorithm(s2);
}

}  // namespace atcoder


#include <cassert>
#include <vector>

namespace atcoder {

struct two_sat {
  public:
	two_sat() : _n(0), scc(0) {}
	two_sat(int n) : _n(n), _answer(n), scc(2 * n) {}

	void add_clause(int i, bool f, int j, bool g) {
		assert(0 <= i && i < _n);
		assert(0 <= j && j < _n);
		scc.add_edge(2 * i + (f ? 0 : 1), 2 * j + (g ? 1 : 0));
		scc.add_edge(2 * j + (g ? 0 : 1), 2 * i + (f ? 1 : 0));
	}
	bool satisfiable() {
		auto id = scc.scc_ids().second;
		for (int i = 0; i < _n; i++) {
			if (id[2 * i] == id[2 * i + 1]) return false;
			_answer[i] = id[2 * i] < id[2 * i + 1];
		}
		return true;
	}
	std::vector<bool> answer() { return _answer; }

  private:
	int _n;
	std::vector<bool> _answer;
	internal::scc_graph scc;
};

}  // namespace atcoder
using namespace atcoder;
constexpr ll MAX = 500010;
ll fac[MAX],finv[MAX],inv[MAX];
void COMinit(){
  fac[0]=fac[1]=1;
  finv[0]=finv[1]=1;
  inv[1]=1;
  for(int i=2;i<MAX;i++){
    fac[i]=fac[i-1]*i%mod;
    inv[i]=mod-inv[mod%i]*(mod/i)%mod;
    finv[i]=finv[i-1]*inv[i]%mod;
  }
}
ll binom(ll n,ll k){
  if(n<k) return 0;
  if(n<0||k<0) return 0;
  return fac[n]*(finv[k]*finv[n-k]%mod)%mod;
}
ll pownk(ll n,ll k){
  //[x^k] 1/(1-x)^n
  if(n==0&&k==0) return 1;
  return binom(n+k-1,k);
}
template<class T>
vector<T> NTT(vector<T> a,vector<T> b){
  ll nmod=T::mod();
  int n=a.size();
  int m=b.size();
  vector<int> x1(n);
  vector<int> y1(m);
  for(int i=0;i<n;i++){
    ll tmp1;
    tmp1=a[i].val();
    x1[i]=tmp1;
  }
  for(int i=0;i<m;i++){
    ll tmp1;
    tmp1=b[i].val();
    y1[i]=tmp1;
  }
  auto z1=convolution<167772161>(x1,y1);
  auto z2=convolution<469762049>(x1,y1);
  auto z3=convolution<1224736769>(x1,y1);
  vector<T> res(n+m-1);
  ll m1=167772161;
  ll m2=469762049;
  ll m3=1224736769;
  ll m1m2=104391568;
  ll m1m2m3=721017874;
  ll mm12=m1*m2%nmod;
  for(int i=0;i<n+m-1;i++){
    int v1=(z2[i]-z1[i])*m1m2%m2;
    if(v1<0) v1+=m2;
    int v2=(z3[i]-(z1[i]+v1*m1)%m3)*m1m2m3%m3;
    if(v2<0) v2+=m3;
    res[i]=(z1[i]+v1*m1+v2*mm12);
  }
  return res;
}
template<class T>
struct FormalPowerSeries:vector<T>{
  using vector<T>::vector;
  using F=FormalPowerSeries;
  F &operator=(const vector<T> &g){
    int n=g.size();
    int m=(*this).size();
    (*this).resize(n);
    for(int i=0;i<n;i++) (*this)[i]=g[i];
    return (*this);
  }
  F &operator=(const F &g){
    int n=g.size();
    int m=(*this).size();
    (*this).resize(n);
    for(int i=0;i<n;i++) (*this)[i]=g[i];
    return (*this);
  }
  F &operator-(){
    for(int i=0;i<(*this).size();i++) (*this)[i]*=-1;
    return (*this);
  }
  F &operator+=(const F &g){
    int n=(*this).size();
    int m=g.size();
    if(n<m) (*this).resize(m);
    for(int i=0;i<m;i++) (*this)[i]+=g[i];
    return (*this);
  }
  F &operator+=(const T &r){
    if((*this).size()==0) (*this).resize(1);
    (*this)[0]+=r;
    return (*this);
  }
  F &operator-=(const F &g){
    int n=(*this).size();
    int m=g.size();
    if(n<m) (*this).resize(m);
    for(int i=0;i<m;i++) (*this)[i]-=g[i];
    return (*this);
  }
  F &operator-=(const T &r){
    if((*this).size()==0) (*this).resize(1);
    (*this)[0]-=r;
    return (*this);
  }
  F &operator*=(const F &g){
    (*this)=convolution((*this),g);
    return (*this);
  }
  F &operator*=(const T &r){
    for(int i=0;i<(*this).size();i++) (*this)[i]*=r;
    return (*this);
  }
  F &operator/=(const F &g){
    int n=(*this).size();
    (*this)=convolution((*this),g.inv());
    (*this).resize(n);
    return (*this);
  }
  F &operator/=(T r){
    r=r.inv();
    for(int i=0;i<(*this).size();i++) (*this)[i]*=r;
    return (*this);
  }
  F &operator<<=(const int d) {
    int n=(*this).size();
    (*this).insert((*this).begin(),d,0);
    return *this;
  }
  F &operator>>=(const int d) {
    int n=(*this).size();
    (*this).erase((*this).begin(),(*this).begin()+min(n, d));
    return *this;
  }
  F operator*(const T &g) const { return F(*this)*=g;}
  F operator-(const T &g) const { return F(*this)-=g;}
  F operator+(const T &g) const { return F(*this)+=g;}
  F operator/(const T &g) const { return F(*this)/=g;}
  F operator*(const F &g) const { return F(*this)*=g;}
  F operator-(const F &g) const { return F(*this)-=g;}
  F operator+(const F &g) const { return F(*this)+=g;}
  F operator/(const F &g) const { return F(*this)/=g;}
  F operator%(const F &g) const { return F(*this)%=g;}
  F operator<<(const int d) const { return F(*this)<<=d;}
  F operator>>(const int d) const { return F(*this)>>=d;}  
  F pre(int sz) const {
    return F(begin(*this), begin(*this) + min((int)this->size(), sz));
  }
  F inv(int deg=-1) const {
    int n=(*this).size();
    if(deg==-1) deg=n;
    assert(n>0&&(*this)[0]!=T(0));
    F g(1);
    g[0]=(*this)[0].inv();
    while(g.size()<deg){
      int m=g.size();
      F f(begin(*this),begin(*this)+min(n,2*m));
      F r(g);
      f.resize(2*m);
      r.resize(2*m);
      internal::butterfly(f);
      internal::butterfly(r);
      for(int i=0;i<2*m;i++) f[i]*=r[i];
      internal::butterfly_inv(f);
      f.erase(f.begin(),f.begin()+m);
      f.resize(2*m);
      internal::butterfly(f);
      for(int i=0;i<2*m;i++) f[i]*=r[i];
      internal::butterfly_inv(f);
      T in=T(2*m).inv();
      in*=-in;
      for(int i=0;i<m;i++) f[i]*=in;
      g.insert(g.end(),f.begin(),f.begin()+m);
    }
    return g.pre(deg);
  }
  T eval(const T &a){
    T x=1;
    T ret=0;
    for(int i=0;i<(*this).size();i++){
      ret+=(*this)[i]*x;
      x*=a;
    }
    return ret;
  }
  void onemul(const int d,const T c){
    int n=(*this).size();
    for(int i=n-d-1;i>=0;i--){
      (*this)[i+d]+=(*this)[i]*c;
    }
  }
  void onediv(const int d,const T c){
    int n=(*this).size();
    for(int i=0;i<n-d;i++){
      (*this)[i+d]-=(*this)[i]*c;
    }
  }
  F diff() const {
    int n=(*this).size();
    F ret(n);
    for(int i=1;i<n;i++) ret[i-1]=(*this)[i]*i;
    ret[n-1]=0;
    return ret;
  }
  F integral() const {
    int n=(*this).size(),mod =T::mod();
    vector<T> inv(n);
    inv[1]=1;
    for(int i=2;i<n;i++) inv[i]=T(mod)-inv[mod%i]*(mod/i);
    F ret(n);
    for(int i=n-2;i>=0;i--) ret[i+1]=(*this)[i]*inv[i+1];
    ret[0]=0;
    return ret;
  }
  F log(int deg=-1) const {
    int n=(*this).size();
    if(deg==-1) deg=n;
    assert((*this)[0]==T(1));
    return ((*this).diff()*(*this).inv(deg)).pre(deg).integral();
  }
  F exp(int deg=-1) const {
    int n=(*this).size();
    if(deg==-1) deg=n;
    assert(n==0||(*this)[0]==0);
    F Inv;
    Inv.reserve(deg);
    Inv.push_back(T(0));
    Inv.push_back(T(1));
    auto inplace_integral = [&](F& f) -> void {
    const int n = (int)f.size();
      int mod=T::mod();
      while(Inv.size()<=n){
        int i = Inv.size();
        Inv.push_back((-Inv[mod%i])*(mod/i));
      }
      f.insert(begin(f),T(0));
      for(int i=1;i<=n;i++) f[i]*=Inv[i];
    };
    auto inplace_diff = [](F &f) -> void {
      if(f.empty()) return;
      f.erase(begin(f));
      T coeff=1,one=1;
      for(int i=0;i<f.size();i++){
        f[i]*=coeff;
        coeff++;
      }
    };
    F b{1,1<(int)(*this).size()?(*this)[1]:0},c{1},z1,z2{1,1};
    for(int m=2;m<=deg;m<<=1){
      auto y=b;
      y.resize(2*m);
      internal::butterfly(y);
      z1=z2;
      F z(m);
      for(int i=0;i<m;i++) z[i]=y[i]*z1[i];
      internal::butterfly_inv(z);
      T si=T(m).inv();
      for(int i=0;i<m;i++) z[i]*=si;
      fill(begin(z),begin(z)+m/2,T(0));
      internal::butterfly(z);
      for(int i=0;i<m;i++) z[i]*=-z1[i];
      internal::butterfly_inv(z);
      for(int i=0;i<m;i++) z[i]*=si;
      c.insert(end(c),begin(z)+m/2,end(z));
      z2=c;
      z2.resize(2*m);
      internal::butterfly(z2);
      F x(begin((*this)),begin((*this))+min<int>((*this).size(),m));
      x.resize(m);
      inplace_diff(x);
      x.push_back(T(0));
      internal::butterfly(x);
      for(int i=0;i<m;i++) x[i]*=y[i];
      internal::butterfly_inv(x);
      for(int i=0;i<m;i++) x[i]*=si;
      x-=b.diff();
      x.resize(2*m);
      for(int i=0;i<m-1;i++) x[m+i]=x[i],x[i]=T(0);
      internal::butterfly(x);
      for(int i=0;i<2*m;i++) x[i]*=z2[i];
      internal::butterfly_inv(x);
      T si2=T(m<<1).inv();
      for(int i=0;i<2*m;i++) x[i]*=si2;
      x.pop_back();
      inplace_integral(x);
      for(int i=m;i<min<int>((*this).size(),2*m);i++) x[i]+=(*this)[i];
      fill(begin(x),begin(x)+m,T(0));
      internal::butterfly(x);
      for(int i=0;i<2*m;i++) x[i]*=y[i];
      internal::butterfly_inv(x);
      for(int i=0;i<2*m;i++) x[i]*=si2;
      b.insert(end(b),begin(x)+m,end(x));
    }
    return b.pre(deg);
  }
  F pow(ll m){
    int n=(*this).size();
    int x=0;
    while(x<(*this).size()&&(*this)[x]==T(0)){
      x++;
    }
    if(m==0){
      F ret(n);
      ret[0]=1;
      return ret;
    }
    if(x*m>=n){
      F ret(n);
      return ret;
    }
    F f(n-x);
    T y=(*this)[x];
    for(int i=x;i<n;i++) f[i-x]=(*this)[i]/y;
    f=f.log();
    for(int i=0;i<f.size();i++) f[i]*=m;
    f=f.exp();
    y=y.pow(m);
    for(int i=0;i<f.size();i++) f[i]*=y;
    F ret(n);
    for(int i=x*m;i<n;i++) ret[i]=f[i-x*m];
    return ret;
  }
  F shift(T c){
    int n=(*this).size();
    int mod=T::mod();
    vector<T> inv(n+1);
    inv[1]=1;
    for(int i=2;i<=n;i++) inv[i]=mod-inv[mod%i]*(mod/i);
    T x=1;
    for(int i=0;i<n;i++){
      (*this)[i]*=x;
      x*=(i+1);
    }
    F g(n);
    T y=1;
    T now=1;
    for(int i=0;i<n;i++){
      g[n-i-1]=now*y;
      now*=c;
      y*=inv[i+1];
    }
    auto tmp=convolution(g,(*this));
    T z=1;
    for(int i=0;i<n;i++){
      (*this)[i]=tmp[n+i-1]*z;
      z*=inv[i+1];
    }
    return (*this);
  }
  pair<F,F> division(F g){
    F f=(*this);
    int n=f.size();
    int m=g.size();
    if(n<m){
      F p(0);
      return {p,f};
    }
    F p(n-m+1),q(n-m+1);
    for(int i=0;i<n-m+1;i++) p[i]=f[n-i-1];
    for(int i=0;i<n-m+1&&i<m;i++) q[i]=g[m-i-1];
    p/=q;
    for(int i=0;i<(n-m+1)/2;i++) swap(p[i],p[(n-m+1)-i-1]);
    g.resize(n);
    g*=p;
    for(int i=0;i<n;i++) f[i]-=g[i];
    int v=n-m+1,u=0;
    for(int i=0;i<n;i++) if(f[i].val()) chmax(u,i+1);
    p.resize(v);
    f.resize(u);
    return {p,f};
  }
  vector<T> multieva(vector<T> p){
    int m=p.size();
    int n=(*this).size();
    int M=1;
    int l=0;
    while(M<m){
      M*=2;
      l++;
    }
    p.resize(M);
    swap(m,M);
    vector<vector<F>> g(l+1);
    g[0].resize(m);
    for(int i=0;i<m;i++){
      g[0][i].resize(2);
      g[0][i][0]=-p[i];
      g[0][i][1]=1;
    }
    for(int i=0;i<l;i++){
      g[i+1].resize(m>>(i+1));
      for(int j=0;j<(m>>(i+1));j++) g[i+1][j]=g[i][2*j]*g[i][2*j+1];
    }
    g[l][0]=(*this).division(g[l][0]).se;
    for(int i=l;i>=1;i--){
      for(int j=0;j<(m>>(i-1));j++){
        g[i-1][j]=g[i][j/2].division(g[i-1][j]).se;
      }
    }
    for(int i=0;i<M;i++) if(g[0][i].size()==0) g[0][i].resize(1);
    vector<T> ret(M);
    for(int i=0;i<M;i++) ret[i]=g[0][i][0];
    return ret;
  }
};
template<class T>
void GaussJordan(vector<vector<T>> &A,bool is_extended = false){
  ll m=A.size(),n=A[0].size();
  ll rank=0;
  for(int i=0;i<n;i++){
    if(is_extended&&i==n-1) break;
    ll p=-1;
    for(int j=rank;j<m;j++){
      if(A[j][i]!=T(0)){
        p=j;
        break;
      }
    }
    if(p==-1) continue;
    swap(A[p],A[rank]);
    auto k=A[rank][i];
    for(int i2=0;i2<n;i2++){
      A[rank][i2]/=k;
    }
    for(int j=0;j<m;j++){
      if(j!=rank&&A[j][i]!=T(0)){
        auto fac=A[j][i];
        for(int i2=0;i2<n;i2++){
          A[j][i2]-=A[rank][i2]*fac;
        }
      }
    }
    rank++;
  }
}
 
template<class T>
void linear_equation(vector<vector<T>> a, vector<T> b, vector<T> &res) {
  ll m=a.size(),n=a[0].size();
  vector<vector<T>> M(m,vector<T>(n+1));
  for(int i=0;i<m;i++){
    for(int j=0;j<n;j++){
      M[i][j]=a[i][j];
    }
    M[i][n]=b[i];
  }
  GaussJordan(M,true);
  res.assign(n,0);
  for(int i=0;i<n;i++) res[i]=M[i][n];
}
template<class F>
pair<F,F> Characteristic_equation(const F &a) {
  using T=typename F::value_type;
  ll n=a.size();
  ll p=n/2;
  ll u=p+(p+1);
  vector<vector<T>> f(u,vector<T>(u));
  f[0][0]=1;
  for(int i=1;i<=p;i++){
    f[i][i-1]=-1;
  }
  for(int i=p;i<u;i++){
    ll t=0;
    for(int j=1+i-p;j<u;j++){
      f[j][i]=a[t];
      t++;
    }
  }
  vector<T> b(u);
  b[0]=1;
  vector<T> res(u);
  linear_equation(f,b,res);
  F X(p),Y(p+1);
  for(int i=0;i<p;i++) X[i]=res[i];
  for(int j=p;j<res.size();j++) Y[j-p]=res[j];
  return {X,Y};
}
template <class T>
T getK(FormalPowerSeries<T> p, FormalPowerSeries<T> q,ll k){
  if(p.size()==0) return 0;
  if(k==0) return p[0]/q[0];
  if(p.size()>=q.size()){
    p=p.division(q).se;
  }
  if(q[0].val()!=1){
    for(int i=0;i<p.size();i++) p[i]/=q[0];
    for(int i=q.size()-1;i>=0;i--) q[i]/=q[0];
  }
  if(k<0) return T(0);
  ll d=q.size();
  p.resize(d-1);
  while(k){
    auto qn=q;
    for(int i=1;i<d;i+=2) qn[i]*=-1;
    p*=qn;
    q*=qn;
    for(int i=0;i<d-1;i++){
      p[i]=p[(i<<1)|(k&1)];
    }
    for(int i=0;i<d;i++){
      q[i]=q[(i<<1)];
    }
    p.resize(d-1);
    q.resize(d);
    k/=2;
  }
  return p[0];
}
using fps=FormalPowerSeries<modint998244353>;
using mint = modint998244353;
fps mergeconv(vector<fps> a){
  while(a.size()>1){
    ll n=a.size();
    vector<fps> b((n+1)/2);
    for(int i=0;i<a.size();i+=2){
      if(i+1<a.size()) b[i/2]=a[i]*a[i+1];
      else b[i/2]=a[i];
    }
    a=b;
  }
  return a[0];
}
//これは足し算
pair<fps,fps> mergeconvfrac(vector<pair<fps,fps>> a){
  while(a.size()>1){
    ll n=a.size();
    vector<pair<fps,fps>> b((n+1)/2);
    for(int i=0;i<a.size();i+=2){
      if(i+1<a.size()) b[i/2]={a[i].fi*a[i+1].se+a[i+1].fi*a[i].se,a[i].se*a[i+1].se};
      else b[i/2]=a[i];
    }
    a=b;
  }
  return a[0];
}
vector<mint> chirp_z_transform(ll n,ll m,fps x,mint w,mint a=mint(1)){
  vector<mint> y(n),v(n+m-1);
  vector<mint> u(n+m-1);
  u[0]=1;
  for(int i=1;i<n+m-1;i++) u[i]=u[i-1]*w;
  v[0]=1;
  for(int i=1;i<n+m-1;i++) v[i]=v[i-1]*u[i-1];
  mint ap=1;
  for(int i=0;i<n;i++){
    y[i]=x[i]*ap/v[i];
    ap*=a;
  }
  rever(y);
  y=convolution(y,v);
  vector<mint> ans(m);
  for(int i=0;i<m;i++) ans[i]=y[n-1+i]/v[i];
  return ans;
}
template<class T>
vector<T> all_inv(vector<T> p){
  ll n=p.size();
  vector<T> l(n),r(n);
  T all=1;
  for(int i=0;i<n;i++){
    l[i]=r[i]=p[i];
    all*=p[i];
  }
  for(int i=1;i<n;i++) l[i]*=l[i-1];
  for(int i=n-2;i>=0;i--) r[i]*=r[i+1];
  vector<mint> ret(n);
  all=all.inv();
  for(int i=0;i<n;i++){
    ret[i]=all;
    if(i) ret[i]*=l[i-1];
    if(i+1<n) ret[i]*=r[i+1];
  }
  return ret;
}
using mint = modint998244353;
int main() {
  cincout();
  ll n;
  cin>>n;
  vector<ll> a(n);
  for(int i=0;i<n-1;i++){
	ll p,q;
	cin>>p>>q;
	p--;
	q--;
	a[p]++;
	a[q]++;
  }
  mint ans=0;
  for(int i=0;i<n;i++) ans+=mint(2).pow(a[i]);
  cout<<ans.val()<<endl;
}
0