結果
| 問題 | No.2717 Sum of Subarray of Subsequence |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-12-21 16:51:17 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 161 ms / 2,000 ms |
| コード長 | 27,130 bytes |
| 記録 | |
| コンパイル時間 | 6,784 ms |
| コンパイル使用メモリ | 348,100 KB |
| 実行使用メモリ | 7,848 KB |
| 最終ジャッジ日時 | 2025-12-21 16:51:29 |
| 合計ジャッジ時間 | 10,385 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 |
ソースコード
// QCFium 法
//#pragma GCC target("avx2") // yukicoder と codechef では消す
#pragma GCC optimize("O3") // たまにバグる
#pragma GCC optimize("unroll-loops")
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline int getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<(int)1e9+7>;
//using mint = modint; // mint::set_mod(m);
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
int mute_dump = 0;
int frac_print = 0;
#if __has_include(<atcoder/all>)
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
#endif
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); rep(i,9)cout<<MLE[i]; exit(0); } } // RE の代わりに MLE を出す
#endif
// i=n, j=m に対する愚直解を返す.
mint naive_sub(int n, int m) {
mint res = 0;
vm a(n);
a[m] = 1;
// a の全ての部分列 b について
repb(set, n) {
vm b;
repis(i, set) b.push_back(a[i]);
int m = sz(b);
// b の全ての連続部分列 c について
rep(l, m) repi(r, l + 1, m) {
// c の総和を求め答えに加える.
repi(j, l, r - 1) res += b[j];
}
}
return res;
}
// (i,j)∈[0..n)×[0..m) に対する愚直解を返す.
vvm naive() {
int n = 10;
vvm tbl(n);
rep(i, n) {
tbl[i].resize(n);
rep(j, i) {
tbl[i][j] = naive_sub(i, j);
}
}
#ifdef _MSC_VER
// 埋め込み用
string eb;
eb += "vvm tbl = {\n";
rep(i, sz(tbl)) {
eb += "{";
rep(j, sz(tbl[i])) eb += to_string(tbl[i][j].val()) + ",";
eb.pop_back();
eb += "},\n";
}
eb.pop_back(); eb.pop_back();
eb += "};\n\n";
cout << eb;
#endif
return tbl;
}
//【行列】
template <class T>
struct Matrix {
int n, m; // 行列のサイズ(n 行 m 列)
vector<vector<T>> v; // 行列の成分
// n×m 零行列で初期化する.
Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}
// n×n 単位行列で初期化する.
Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }
// 二次元配列 a[0..n)[0..m) の要素で初期化する.
Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
Matrix() : n(0), m(0) {}
// 代入
Matrix(const Matrix&) = default;
Matrix& operator=(const Matrix&) = default;
// アクセス
inline vector<T> const& operator[](int i) const { return v[i]; }
inline vector<T>& operator[](int i) {return v[i];}
// 入力
friend istream& operator>>(istream& is, Matrix& a) {
rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
return is;
}
// 行の追加
void push_back(const vector<T>& a) {
Assert(sz(a) == m);
v.push_back(a);
n++;
}
// 行の削除
void pop_back() {
Assert(n > 0);
v.pop_back();
n--;
}
// サイズ変更
void resize(int n_) {
v.resize(n_);
n = n_;
}
void resize(int n_, int m_) {
n = n_;
m = m_;
v.resize(n);
rep(i, n) v[i].resize(m);
}
// 空か
bool empty() const { return min(n, m) == 0; }
// 比較
bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
bool operator!=(const Matrix& b) const { return !(*this == b); }
// 加算,減算,スカラー倍
Matrix& operator+=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] += b[i][j];
return *this;
}
Matrix& operator-=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] -= b[i][j];
return *this;
}
Matrix& operator*=(const T& c) {
rep(i, n) rep(j, m) v[i][j] *= c;
return *this;
}
Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
Matrix operator-() const { return Matrix(*this) *= T(-1); }
// 行列ベクトル積 : O(m n)
vector<T> operator*(const vector<T>& x) const {
vector<T> y(n);
rep(i, n) rep(j, m) y[i] += v[i][j] * x[j];
return y;
}
// ベクトル行列積 : O(m n)
friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
vector<T> y(a.m);
rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
return y;
}
// 積:O(n^3)
Matrix operator*(const Matrix& b) const {
Matrix res(n, b.m);
rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j];
return res;
}
Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }
// 累乗:O(n^3 log d)
Matrix pow(ll d) const {
Matrix res(n), pow2 = *this;
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d >>= 1;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Matrix& a) {
rep(i, a.n) {
os << "[";
rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
if (i < a.n - 1) os << "\n";
}
return os;
}
#endif
};
//【線形方程式】O(n m min(n, m))
template <class T>
vector<T> gauss_jordan_elimination(const Matrix<T>& A, const vector<T>& b, vector<vector<T>>* xs = nullptr) {
int n = A.n, m = A.m;
// v : 拡大係数行列 (A | b)
vector<vector<T>> v(n, vector<T>(m + 1));
rep(i, n) rep(j, m) v[i][j] = A[i][j];
rep(i, n) v[i][m] = b[i];
// pivots[i] : 第 i 行のピボットが第何列にあるか
vi pivots;
// 注目位置を v[i][j] とする.
int i = 0, j = 0;
while (i < n && j <= m) {
// 注目列の下方の行から非 0 成分を見つける.
int i2 = i;
while (i2 < n && v[i2][j] == T(0)) i2++;
// 見つからなかったら注目位置を右に移す.
if (i2 == n) { j++; continue; }
// 見つかったら第 i 行とその行を入れ替える.
if (i != i2) swap(v[i], v[i2]);
// v[i][j] をピボットに選択する.
pivots.push_back(j);
// v[i][j] が 1 になるよう第 i 行全体を v[i][j] で割る.
T vij_inv = T(1) / v[i][j];
repi(j2, j, m) v[i][j2] *= vij_inv;
// 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる.
rep(i2, n) {
if (v[i2][j] == T(0) || i2 == i) continue;
T mul = v[i2][j];
repi(j2, j, m) v[i2][j2] -= v[i][j2] * mul;
}
// 注目位置を右下に移す.
i++; j++;
}
// 最後に見つかったピボットの位置が第 m 列ならば解なし.
if (!pivots.empty() && pivots.back() == m) return vector<T>();
// A x = b の特殊解 x0 の構成(任意定数は全て 0 にする)
vector<T> x0(m);
int rnk = sz(pivots);
rep(i, rnk) x0[pivots[i]] = v[i][m];
// 同次形 A x = 0 の一般解 {x} の基底の構成(任意定数を 1-hot にする)
if (xs != nullptr) {
xs->clear();
int i = 0;
rep(j, m) {
if (i < rnk && j == pivots[i]) {
i++;
continue;
}
vector<T> x(m);
x[j] = T(1);
rep(i2, i) x[pivots[i2]] = -v[i2][j];
xs->emplace_back(move(x));
}
}
return x0;
}
// https://qiita.com/satoshin_astonish/items/a628ec64f29e77501d07
namespace satoshin {
/* 内積 */
double dot(const vl& x, const vd& y) {
double z = 0.0;
const int n = sz(x);
for (int i = 0; i < n; ++i) z += x[i] * y[i];
return z;
}
double dot(const vd& x, const vd& y) {
double z = 0.0;
const int n = sz(x);
for (int i = 0; i < n; ++i) z += x[i] * y[i];
return z;
}
double dot(const vl& x, const vl& y) {
double z = 0.0;
const int n = sz(x);
for (int i = 0; i < n; ++i) z += x[i] * y[i];
return z;
}
/* Gram-Schmidtの直交化 */
tuple<vd, vvd> Gram_Schmidt_squared(const vvl& b) {
const int n = sz(b), m = sz(b[0]); int i, j, k;
vd B(n);
vvd GSOb(n, vd(m)), mu(n, vd(n));
for (i = 0; i < n; ++i) {
mu[i][i] = 1.0;
for (j = 0; j < m; ++j) GSOb[i][j] = (double)b[i][j];
for (j = 0; j < i; ++j) {
mu[i][j] = dot(b[i], GSOb[j]) / dot(GSOb[j], GSOb[j]);
for (k = 0; k < m; ++k) GSOb[i][k] -= mu[i][j] * GSOb[j][k];
}
B[i] = dot(GSOb[i], GSOb[i]);
}
return std::forward_as_tuple(B, mu);
}
/* 部分サイズ基底簡約 */
void SizeReduce(vvl& b, vvd& mu, const int i, const int j) {
ll q;
const int m = sz(b[0]);
if (mu[i][j] > 0.5 || mu[i][j] < -0.5) {
q = (ll)round(mu[i][j]);
for (int k = 0; k < m; ++k) b[i][k] -= q * b[j][k];
for (int k = 0; k <= j; ++k) mu[i][k] -= mu[j][k] * q;
}
}
/* LLL基底簡約 */
void LLLReduce(vvl& b, const float d = 0.99) {
const int n = sz(b), m = sz(b[0]); int j, i, h;
double t, nu, BB, C;
auto [B, mu] = Gram_Schmidt_squared(b);
ll tmp;
for (int k = 1; k < n;) {
h = k - 1;
for (j = h; j > -1; --j) SizeReduce(b, mu, k, j);
//Checks if the lattice basis matrix b satisfies Lovasz condition.
if (k > 0 && B[k] < (d - mu[k][h] * mu[k][h]) * B[h]) {
for (i = 0; i < m; ++i) { tmp = b[h][i]; b[h][i] = b[k][i]; b[k][i] = tmp; }
nu = mu[k][h]; BB = B[k] + nu * nu * B[h]; C = 1.0 / BB;
mu[k][h] = nu * B[h] * C; B[k] *= B[h] * C; B[h] = BB;
for (i = 0; i <= k - 2; ++i) {
t = mu[h][i]; mu[h][i] = mu[k][i]; mu[k][i] = t;
}
for (i = k + 1; i < n; ++i) {
t = mu[i][k]; mu[i][k] = mu[i][h] - nu * t;
mu[i][h] = t + mu[k][h] * mu[i][k];
}
--k;
}
else ++k;
}
}
}
vl LLLReduce(const vvm& lat_) {
int h = sz(lat_);
int w = sz(lat_[0]);
vvl lat(h + w, vl(w));
rep(i, h) rep(j, w) lat[i][j] = lat_[i][j].val();
rep(i, w) lat[h + i][i] = mint::mod();
h = sz(lat);
satoshin::LLLReduce(lat);
// L1 ノルムをチェックする.
ll sum = 0;
rep(j, w) sum += abs(lat[0][j]);
dump("L1:", sum);
// L1 ノルムが大きいものは捨てる.
repi(i, 1, h - 1) {
ll sum2 = 0;
rep(j, w) sum2 += abs(lat[i][j]);
if (sum2 > sum * 10.) {
lat.resize(i);
h = i;
break;
}
}
dump("lat:"); frac_print = 1; dumpel(lat); frac_print = 0;
return lat[0];
}
// 変数係数線形漸化式の係数を計算し,埋め込み用のコードを出力する.
vvm embed_coefs_1D(const vm& seq, int TRM_ini = 1, int DEG_ini = 1, bool LLL = false) {
int n = sz(seq);
// TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式
// Σt∈[0..TRM) Σd∈[0..DEG) coefs[t][d] (i-TRM+1+t)^d seq[i-t] = 0
// を探す.
int TRM = TRM_ini, DEG = DEG_ini;
while (1) {
//dump("TRM:", TRM, "DEG:", DEG);
int h = n - TRM + 1;
int w = TRM * DEG;
// 行列方程式 A x = 0 を解いて一般解の基底 xs を求める.
Matrix<mint> A(h, w);
repi(i, TRM - 1, n - 1) {
rep(t, TRM) rep(d, DEG) {
A[i - TRM + 1][t * DEG + d] = mint(i - TRM + 1 + t).pow(d) * seq[i - t];
}
}
vvm xs;
gauss_jordan_elimination(A, vm(h), &xs);
// 自明解 x = 0 しか存在しない場合は失敗.
if (xs.empty()) {
if (DEG == 1) {
DEG = TRM + DEG;
TRM = 1;
}
else {
TRM++;
DEG--;
}
continue;
}
dump("TRM:", TRM, "DEG:", DEG);
dump("#eq:", h, "#var:", w);
dump("xs:"); frac_print = 1; dumpel(xs); frac_print = 0;
// 変数係数線形漸化式の係数
vvm coefs(TRM, vm(DEG));
if (LLL) {
// A x = 0 の解空間の基底に LLL を適用する.
// 性能はいまいちなのでガチでやるなら Mathematica を使う.
auto lat0 = LLLReduce(xs);
rep(t, TRM) rep(d, DEG) coefs[t][d] = lat0[t * DEG + d];
}
else {
rep(t, TRM) rep(d, DEG) coefs[t][d] = xs.back()[t * DEG + d];
}
return coefs;
}
return vvm();
}
// 変数係数線形漸化式の係数を計算し,埋め込み用のコードを出力する.
pair<vvvm, vvvm> embed_coefs_2D(const vvm& tbl, int DEG1_ini = 1, int TRM2_ini = 1, int DEG2_ini = 1, bool LLL = false) {
int n1 = sz(tbl);
// TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式
// Σt1∈[0..TRM1) Σd1∈[0..DEG1) Σt2∈[0..TRM2) Σd2∈[0..DEG2)
// c[t1][d1][t2][d2] (i1-TRM1+1+t1)^d1 (i2-TRM2+1+t2)^d2 tbl[i1-t1][i2-t2] = 0
// を探す.
int TRM1 = 1, DEG1 = DEG1_ini;
int TRM2 = TRM2_ini, DEG2 = DEG2_ini;
int P_MAX = max({ TRM1, DEG1, TRM2, DEG2 });
while (1) {
//dump("TRM1:", TRM1, "DEG1:", DEG1, "TRM2:", TRM2, "DEG2:", DEG2);
int w = TRM1 * DEG1 * TRM2 * DEG2;
// 行列方程式 A x = 0 を解いて一般解の基底 xs を求める.
Matrix<mint> A(0, w);
repi(i1, TRM1 - 1, n1 - 1) {
int n2 = sz(tbl[i1]);
repi(i2, TRM2 - 1, n2 - 1) {
vm a(w); bool valid = true;
rep(t1, TRM1) rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) {
if (i2 - t2 >= sz(tbl[i1 - t1])) {
valid = false;
break;
}
int idx = ((t1 * DEG1 + d1) * TRM2 + t2) * DEG2 + d2;
mint pow_i = mint(i1 - TRM1 + 1 + t1).pow(d1) * mint(i2 - TRM2 + 1 + t2).pow(d2);
a[idx] = pow_i * tbl[i1 - t1][i2 - t2];
}
if (valid) A.push_back(a);
}
}
int h = A.n;
vvm xs;
gauss_jordan_elimination(A, vm(h), &xs);
// 自明解 x = 0 しか存在しない場合は失敗.
if (xs.empty()) {
while (1) {
DEG2++;
if (DEG2 > P_MAX) { DEG2 = 1; TRM2++; };
if (TRM2 > P_MAX) { TRM2 = 1; DEG1++; };
if (DEG1 > P_MAX) { DEG1 = 1; TRM1++; };
if (TRM1 > 1) { TRM1 = 1; P_MAX++; };
if (max({ TRM1, DEG1, TRM2, DEG2 }) == P_MAX) break;
}
continue;
}
dump("TRM1:", TRM1, "DEG1:", DEG1, "TRM2:", TRM2, "DEG2:", DEG2);
dump("#eq:", h, "#var:", w);
dump("xs:"); frac_print = 1; dumpel(xs); frac_print = 0;
// 変数係数線形漸化式の係数
vvvm coefs(DEG1, vvm(TRM2, vm(DEG2)));
if (LLL) {
// A x = 0 の解空間の基底に LLL を適用する.
// 性能はいまいちなのでガチでやるなら Mathematica を使う.
auto lat0 = LLLReduce(xs);
rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) {
int idx = (d1 * TRM2 + t2) * DEG2 + d2;
coefs[d1][t2][d2] = lat0[idx];
}
}
else {
rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) {
int idx = (d1 * TRM2 + t2) * DEG2 + d2;
coefs[d1][t2][d2] = xs.back()[idx];
}
}
// i1 方向への初項の延長
dump("------- embed_coefs_1D -------");
vvvm coefs1(TRM2 - 1);
rep(i2, TRM2 - 1) {
dump("--- i2:", i2, "---");
vm seq; int offset = 0;
rep(i1, sz(tbl)) {
if (sz(tbl[i1]) <= i2) {
if (offset == i1) {
offset = i1 + 1;
continue;
}
else {
break;
}
}
seq.emplace_back(tbl[i1][i2]);
}
coefs1[i2] = embed_coefs_1D(seq, 1, 1, LLL);
}
#ifdef _MSC_VER
// 埋め込み用の文字列を出力する.
auto to_signed_string = [](mint x) {
int v = x.val();
int mod = mint::mod();
if (v > mod / 2) v -= mod;
return to_string(v);
};
string eb;
eb += "\n";
eb += "constexpr int TRM1 = ";
eb += to_string(TRM1);
eb += ";\n";
eb += "constexpr int DEG1 = ";
eb += to_string(DEG1);
eb += ";\n";
eb += "constexpr int TRM2 = ";
eb += to_string(TRM2);
eb += ";\n";
eb += "constexpr int DEG2 = ";
eb += to_string(DEG2);
eb += ";\n\n";
eb += "vvm coefs1[TRM2 - 1] = {\n";
rep(i2, TRM2 - 1) {
eb += "{";
rep(t, sz(coefs1[i2])) {
eb += "{";
rep(d, sz(coefs1[i2][t])) {
eb += to_signed_string(coefs1[i2][t][d]) + ",";
}
eb.pop_back();
eb += "},";
}
eb.pop_back();
eb += "},\n";
}
eb.pop_back(); eb.pop_back();
eb += "};\n\n";
eb += "mint coefs[DEG1][TRM2][DEG2] = {\n";
rep(d1, DEG1) {
eb += "{";
rep(t2, TRM2) {
eb += "{";
rep(d2, DEG2) {
eb += to_signed_string(coefs[d1][t2][d2]) + ",";
}
eb.pop_back();
eb += "},";
}
eb.pop_back();
eb += "},\n";
}
eb.pop_back(); eb.pop_back();
eb += "};\n";
cout << eb;
#endif
return { coefs1, coefs };
}
return pair<vvvm, vvvm>();
}
// 数列 seq を延長して seq[0..N] にする.
void solve_1D(vm& seq, int N, vvm coefs) {
int TRM = sz(coefs);
int DEG = sz(coefs[0]);
int n = sz(seq);
seq.resize(N + 1);
// TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式
// Σt∈[0..TRM) Σd∈[0..DEG) coefs[t][f] (i-TRM+1+t)^d a[i-t] = 0
// を用いて数列 a を延長する.
repi(i, n, N) {
mint dnm = 0;
mint pow_i = 1;
rep(d, DEG) {
dnm += coefs[0][d] * pow_i;
pow_i *= i - TRM + 1;
}
mint num = 0;
repi(t, 1, TRM - 1) {
mint pow_i = 1;
rep(d, DEG) {
num += coefs[t][d] * pow_i * seq[i - t];
pow_i *= i - TRM + 1 + t;
}
}
// dnm * a[i] + num = 0 を解く.分母 0 に注意!
if (dnm == 0) {
dump("DIVISION BY ZERO at i =", i);
Assert(dnm != 0);
}
seq[i] = -num / dnm;
}
}
// 2 次元数列 tbl を元に seq = tbl[N][0..M] を計算する.
vm solve_2D(const vvm& tbl, int N, int M, vvvm coefs1, vvvm coefs) {
int TRM1 = 1;
int DEG1 = sz(coefs);
int TRM2 = sz(coefs[0]);
int DEG2 = sz(coefs[0][0]);
vm res(TRM2 - 1);
// i1 方向に tbl[..][0], ..., tbl[..][TRM2-2] を延長する.
dump("------- solve_1D -------");
rep(i2, TRM2 - 1) {
dump("--- i2:", i2, "---");
vm seq; int offset = 0;
rep(i1, sz(tbl)) {
if (sz(tbl[i1]) <= i2) {
if (offset == i1) {
offset = i1 + 1;
continue;
}
else {
break;
}
}
seq.emplace_back(tbl[i1][i2]);
}
if (N - offset < 0) continue;
solve_1D(seq, N - offset, coefs1[i2]);
//dump("seq:", seq);
res[i2] = seq[N - offset];
}
vm pow_i1s(DEG1);
pow_i1s[0] = 1;
repi(d1, 1, DEG1 - 1) pow_i1s[d1] = pow_i1s[d1 - 1] * (N - TRM1 + 1);
// i2 方向に tbl[N][..] を延長する.
res.resize(M + 1);
repi(i2, TRM2 - 1, M) {
mint dnm = 0;
mint pow_i2 = 1;
rep(d2, DEG2) {
rep(d1, DEG1) {
dnm += coefs[d1][0][d2] * pow_i1s[d1] * pow_i2;
}
pow_i2 *= i2 - TRM2 + 1;
}
mint num = 0;
repi(t2, 1, TRM2 - 1) {
mint pow_i2 = 1;
rep(d2, DEG2) {
rep(d1, DEG1) {
num += coefs[d1][t2][d2] * pow_i1s[d1] * pow_i2 * res[i2 - t2];
}
pow_i2 *= i2 - TRM2 + 1 + t2;
}
}
// dnm * tbl[N][i2] + num = 0 を解く.分母 0 に注意!
if (dnm == 0) {
dump("DIVISION BY ZERO at i1 =", N, "i2 =", i2);
Assert(dnm != 0);
}
res[i2] = -num / dnm;
}
return res;
}
// 2 次元数列 tbl を元に seq = tbl[N][0..M] を計算する.
vm solve_2D(const vvm& tbl, int N, int M) {
// --------------- embed_coefs() からの出力を貼る ----------------
constexpr int TRM1 = 1;
constexpr int DEG1 = 3;
constexpr int TRM2 = 3;
constexpr int DEG2 = 3;
vvm coefs1[TRM2 - 1] = {
{{0,499122176,499122176},{-1,0,1}},
{{0,-499122176,499122176},{0,-2,1}} };
mint coefs[DEG1][TRM2][DEG2] = {
{{-10,-11,-3},{0,10,10},{6,1,-7}},
{{4,-499122175,499122176},{-10,499122167,-499122175},{6,8,-1}},
{{-499122176,-499122176,0},{499122176,499122175,0},{0,1,0}} };
// --------------------------------------------------------------
vm res(TRM2 - 1);
// i1 方向に tbl[..][0], ..., tbl[..][TRM2-2] を延長する.
dump("------- solve_1D -------");
rep(i2, TRM2 - 1) {
dump("--- i2:", i2, "---");
vm seq; int offset = 0;
rep(i1, sz(tbl)) {
if (sz(tbl[i1]) <= i2) {
if (offset == i1) {
offset = i1 + 1;
continue;
}
else {
break;
}
}
seq.emplace_back(tbl[i1][i2]);
}
if (N - offset < 0) continue;
solve_1D(seq, N - offset, coefs1[i2]);
//dump("seq:", seq);
res[i2] = seq[N - offset];
}
vm pow_i1s(DEG1);
pow_i1s[0] = 1;
repi(d1, 1, DEG1 - 1) pow_i1s[d1] = pow_i1s[d1 - 1] * (N - TRM1 + 1);
// i2 方向に tbl[N][..] を延長する.
res.resize(M + 1);
repi(i2, TRM2 - 1, M) {
mint dnm = 0;
mint pow_i2 = 1;
rep(d2, DEG2) {
rep(d1, DEG1) {
dnm += coefs[d1][0][d2] * pow_i1s[d1] * pow_i2;
}
pow_i2 *= i2 - TRM2 + 1;
}
mint num = 0;
repi(t2, 1, TRM2 - 1) {
mint pow_i2 = 1;
rep(d2, DEG2) {
rep(d1, DEG1) {
num += coefs[d1][t2][d2] * pow_i1s[d1] * pow_i2 * res[i2 - t2];
}
pow_i2 *= i2 - TRM2 + 1 + t2;
}
}
// dnm * tbl[N][i2] + num = 0 を解く.分母 0 に注意!
if (dnm == 0) {
dump("DIVISION BY ZERO at i1 =", N, "i2 =", i2);
Assert(dnm != 0);
}
res[i2] = -num / dnm;
}
return res;
}
vvm tbl = {
{0,0,0,0,0,0,0,0,0,0},
{1,0,0,0,0,0,0,0,0,0},
{3,3,0,0,0,0,0,0,0,0},
{8,9,8,0,0,0,0,0,0,0},
{20,24,24,20,0,0,0,0,0,0},
{48,60,64,60,48,0,0,0,0,0},
{112,144,160,160,144,112,0,0,0,0},
{256,336,384,400,384,336,256,0,0,0},
{576,768,896,960,960,896,768,576,0,0},
{1280,1728,2048,2240,2304,2240,2048,1728,1280,0} };
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
//【方法】
// 愚直を書いて集めたデータをもとに変数係数線形漸化式を復元する.
//【使い方】
// 1. vm tbl = naive() を実装する.
// 2. coefs = embed_coefs(tbl, TRM1_ini, DEG1_ini, TRM2_ini, DEG2_ini, LLL); を実行する.
// 3. 出力を solve() 内に貼る.
// 4. solve(tbl, n, m, [coefs]) で勝手に tbl[n][0..m] を求めてくれる.
// 愚直解を用意する.再計算がイヤなら埋め込む.
auto tbl = naive();
// 愚直解を渡して変数係数線形漸化式の係数を得る.再計算がイヤなら埋め込む.
// 引数:tbl, DEG1_ini, TRM2_ini, DEG2_ini, LLL?
auto [coefs1, coefs] = embed_coefs_2D(tbl, 1, 1, 1, 0);
int n;
cin >> n;
// 2 次元数列 tbl を元に seq = tbl[n][0..m] を計算する.
// 整理すると綺麗な式になるなら FullSimplify[] すると速くなる.
auto seq = solve_2D(tbl, n, n-1, coefs1, coefs);
// auto seq = solve_2D(tbl, n, m);
//dump(seq);
vm a(n);
cin >> a;
mint res = 0;
rep(i, n) res += a[i] * seq[i];
EXIT(res);
}
/*
vvm tbl = {
{0,0,0,0,0,0,0,0,0,0},
{1,0,0,0,0,0,0,0,0,0},
{3,3,0,0,0,0,0,0,0,0},
{8,9,8,0,0,0,0,0,0,0},
{20,24,24,20,0,0,0,0,0,0},
{48,60,64,60,48,0,0,0,0,0},
{112,144,160,160,144,112,0,0,0,0},
{256,336,384,400,384,336,256,0,0,0},
{576,768,896,960,960,896,768,576,0,0},
{1280,1728,2048,2240,2304,2240,2048,1728,1280,0}};
TRM1: 1 DEG1: 3 TRM2: 3 DEG2: 3
#eq: 80 #var: 27
xs:
0: 4 6 2 0 -5 -5 -2 -1 3 -4 -3 0 5 7 0 -1 -4 0 1 0 0 -2 0 0 1 0 0
1: -10 -11 -3 0 10 10 6 1 -7 4 3/2 -1/2 -10 -19/2 3/2 6 8 -1 1/2 1/2 0 -1/2 -3/2 0 0 1 0
------- embed_coefs_1D -------
--- i2: 0 ---
TRM: 2 DEG: 3
#eq: 9 #var: 6
xs:
0: 0 -1/2 -1/2 -1 0 1
--- i2: 1 ---
TRM: 2 DEG: 3
#eq: 9 #var: 6
xs:
0: 0 1/2 -1/2 0 -2 1
constexpr int TRM1 = 1;
constexpr int DEG1 = 3;
constexpr int TRM2 = 3;
constexpr int DEG2 = 3;
vvm coefs1[TRM2 - 1] = {
{{0,499122176,499122176},{-1,0,1}},
{{0,-499122176,499122176},{0,-2,1}}};
mint coefs[DEG1][TRM2][DEG2] = {
{{-10,-11,-3},{0,10,10},{6,1,-7}},
{{4,-499122175,499122176},{-10,499122167,-499122175},{6,8,-1}},
{{-499122176,-499122176,0},{499122176,499122175,0},{0,1,0}}};
*/